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A	GENERIC	WORKFLOW	FOR	AUTOMATIC
BUILDING	DETECTION	AND	3D
MODELLING

Advanced	urban	3D	modelling
and	visualization

This	article	outlines	a	generic	workflow	for
automatic	buidling	detection	and	3D
modelling	using	modern	technologies,	to
support	applications	ranging	from	urban
planning	and	cadastre	to	change
detection	and	navigation.

The	automatic	detection,	data	extraction,
3D	modelling	and	visualization	of
buildings	in	urban	areas	using	remote
sensing	data	is	an	essential	task	in
various	applications	such	as	cadastre,
urban	and	rural	planning,	change
detection,	mapping,	updating	geographic
information	systems,	monitoring,	housing
value	and	navigation.	Even	today,	this
task	remains	challenging	due	to	the
inherent	artefacts	(e.g.	shadows)	in	the
remote	sensing	data	used,	as	well	as	the
differences	in	viewpoints,	surrounding
environment	and	complex	shape	and	size

of	the	buildings.	This	article	outlines	a	generic	workflow	using	modern	technologies.

Besides	the	recent	developments	in	image	processing,	advances	in	computer	vision	have
promoted	automated	methods	able	to	generate	precise	3D	models	from	overlapped
multiple	2D	imagery	data	derived	from	aerial	platforms.	Such	methods	apply	a	dense
image	matching	(DIM)	algorithm	which	extracts	a	textured	dense	3D	point	cloud	of	a
region	or	an	object	of	interest.	DIM	is	an	affordable	process	compared	to	other
approaches	that	use	other	types	of	sensorial	data	such	as	Lidar.	In	this	area,	numerous
robust	stereo	image	matching	algorithms	have	been	developed,	each	of	which	has	its	own
advantages	and	limitations.	A	generic	workflow	for	building	detection	and	3D	modelling
includes	the	following	steps:	i)	collection	of	data	and	generation	of	proper	features,	ii)

classification	process,	iii)	building	detection,	iv)	building	roof	segmentation,	and	v)	3D	modelling	and	visualization.

Generic	workflow	for	building	detection	and	3D	modelling.

Generation	of	additional	features
Depending	on	the	data	source	employed,	building	detection	techniques	can	be	classified	into	three	groups:	(i)	ones	that	use	airborne	or
satellite	imagery	data,	(ii)	ones	that	exploit	three-dimensional	information,	and	(iii)	those	that	combine	both	data	sources.	However,	the	two
main	limitations	of	using	information	from	multi-modal	sources	(e.g.,	Lidar	and	imagery	data)	are	the	additional	cost	of	acquisition	and
processing,	and	the	issues	related	to	co-registration.	For	this	reason,	in	real-life	applications	such	as	the	cadastral	ones,	sometimes	only
one	type	of	data	is	considered.	To	this	end,	several	indices	and	features	are	calculated	to	efficiently	distinguish	buildings	from	the	other
urban	objects	such	vegetation	and	ground.	In	this	context,	depending	on	the	data	used,	the	normalized	difference	vegetation	index	(NDVI)
is	calculated	(when	the	NIR	band	is	available	in	images)	and	the	normalized	digital	surface	model	(nDSM)	is	calculated	(when	DIM	or	Lidar
point	clouds	are	available).	However,	additional	features	can	be	calculated	and	image-stacked,	especially	from	Lidar	point	clouds,	to



further	contribute	to	the	classification	performance.	Such	features	come	from	a	physical	interpretation	of	the	information,	e.g.	the	entropy,
the	height	variation,	the	planarity	and	the	distribution	of	the	normal	vectors.

Generation	of	additional	features	from	Lidar	point	clouds.

Classification	and	building	detection
Usually,	the	methods	of	building	detection	are	discriminated	into	the	ones	that	apply	a	supervised	machine-learning	scheme	and	those	that
use	a	model-based	approach.	The	main	advantage	of	the	machine	learning	approaches	is	that	they	are	flexible	and	data-driven	methods,
requiring	only	training	samples	to	successfully	generalize	the	building	properties	and	thus	to	perform	an	accurate	classification.	In	contrast,
model-based	approaches	consist	of	many	parameters	that	need	to	be	fine-tuned	for	each	study	area.	Therefore,	supervised	learning
paradigms	provide	higher	generalization	capabilities,	i.e.	robustness	against	data	being	outside	the	training	set.	Recently,	in	the	context	of
machine	learning,	state-of-the-art	algorithms	like	deep	learning	classifiers	through	convolutional	neural	networks	(CNNs)	have	been
efficiently	applied	for	the	building	detection	task.

In	general,	a	CNN	classifier	has	two	main	components:	the	convolutional	layer	and	the	classification	layer.	A	convolutional	layer	is
essentially	a	network	feature	extractor	that	employs	convolution	filters	(i.e.	transformations)	to	the	input	data	(image-stack	features).	These
extracted	network	features	are	able	to	optimize	the	classification	performance.	Spatial	coherency	is	an	important	element	of	the
transformations	involved	in	the	convolutional	layer.	This	is	an	important	property	of	a	deep	CNN	model	since	spatial	characteristics
significantly	affect	building	detection	accuracy.	The	aim	of	the	classification	layer	is	actually	a	supervised	learning	scheme	with	the
capability	of	transforming	the	inputs	from	the	convolutional	layer	into	desired	outputs,	i.e.	the	labelled	classes.	Therefore,	a	CNN	classifier,
in	contrast	to	a	shallow	machine	learning	method,	first	filters	the	input	data	in	a	way	to	maximize	the	classification	accuracy	and	then
performs	the	classification.	The	output	of	the	CNN	is	a	classified	image	on	a	pixel	level,	including	information	associated	with	the	label	of
each	class.	Post-morphological	processing	is	adopted	to	reduce	classification	noise,	taking	into	consideration	the	spatial	coherency
property,	i.e.	through	min	operators	followed	by	majority	voting	filters,	etc.	Finally,	to	evaluate	the	final	building	detection	results,	objective
criteria	are	used	such	as	the	completeness,	correctness	and	quality	rates	based	on	the	TP,	FP	and	FN	entities,	whereby	TP	stands	for	true
positives	(e.g.	reference	building	pixels	that	were	correctly	detected),	FP	stands	for	false	positives	(e.g.	building	pixels	that	not	exist	in	the
reference	dataset)	and	FN	stands	for	false	negatives	(e.g.	reference	building	pixels	that	were	not	detected).	

Collection	of	training	samples	for	each	class	(left)	and	classification	results	through	a	CNN	classifier	(right).

Building	roof	segmentation	and	3D	modelling	results
The	extracted	building	boundaries	from	the	classification	process	are	slightly	dilated	in	order	to	clip	the	raw	Lidar	or	DIM	point	cloud.	Then,
for	each	3D	point	cloud	of	each	building,	a	building	roof	segmentation	process	is	carried	out.	The	most-used	plane	detection	techniques
from	3D	point	clouds	are	region	growing,	RANSAC	and	Hough	methods.	In	fact,	adaptive	point	randomized	Hough	transform	(RHT)	can
extract	satisfactory	results,	satisfying	greatly	the	accuracy	vs.	computational	time	trade-off.	For	each	detected	plane,	the	corresponding
boundaries	are	extracted	to	generate	the	associated	3D	polygons.	Once	the	normalized	height	values	of	each	polygon	vertex	are
available,	the	corresponding	3D	building	model	can	be	extracted.

Building	roof	segmentation	and	3D	modelling.

Conclusion
Automatic	building	detection	and	3D	modelling	is	a	continuous,	essential	and	crucial	task	for	a	variety	of	applications.	Modern	technologies
support	the	development	of	a	generic	workflow.	Two	key	emerging	technologies	are:	i)	various	new	sensors	that	can	provide	multiple
information	(e.g.	multi/hyperspectral	Lidar	point	clouds),	and	ii)	cutting-edge	methods	such	deep	machine	learning	schemes.
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