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COMPARING	AIRBORNE	LIDAR	AND
DENSE	IMAGE	MATCHING	FOR	BUILDING
CLASSIFICATION

Classifying	Buildings	from	Point
Clouds	and	Images

The	reconstruction	of	building	outlines
provides	useful	input	for	land	information
systems.	In	the	city	of	Kalochori	in
northern	Greece,	a	mixed	commercial	and
residential	area	of	33	hectares	was
selected	as	a	test	area	to	evaluate	the
classification	of	buildings.	Two	data
sources	were	available:	airborne	Lidar
and	aerial	photographs.	These	data
sources	were	processed	to	create	two
separate	point	clouds.	Comparison	of	the
results	shows	that	both	data	sources	can
be	used	for	building	classification,
although	more	development	is	needed	to
improve	the	robustness	of	dense	image
matching.

(By	Evangelos	Maltezos	and	Charalabos
Ioannidis,	Greece)

An	urban	area	containing	501	industrial
and	residential	buildings	was	used	as	the	test	site.	The	vegetation	is	characterised	by	moderate,	long	arrays	or	groups	of	dense	trees
between	the	buildings.	Some	buildings	are	partially	occluded	by	high	trees	or	have	high	vegetation	directly	alongside	the	building
boundary.	The	buildings	have	a	complex	structure	with	sloping	roofs,	chimneys,	solar	water	heaters	and	small	extensions	or	major
additions.	Figure	1	shows	a	terrestrial	image	of	a	representative	large	building	and	its	surroundings.	

Lidar	or	images
The	acquisition	of	accurate	dense	3D	point	clouds	in	urban	areas	has	long	been	based	on	airborne	Lidar.	The	collection	of	Lidar	data
requires	expensive	hardware	but,	thanks	to	the	rapid	evolution	of	sensors	and	high-quality	data,	Lidar	remains	in	wide	use.	Due	to	the
nature	of	Lidar	data,	the	point	clouds	have	high	position	accuracy	but	occlusions	and	local	undersampling	may	occur	which	may	result	in	a
lack	of	significant	information	for	applications	like	3D	modelling.	Computer	vision	technology	can	also	automatically	extract	3D	information
from	digital	imagery,	provided	that	sufficient	overlap	is	present	in	the	images.	These	techniques	apply	dense	image	matching	(DIM)	which
can	extract	an	accurate	and	dense	3D	point	cloud	by	stereo	matching.	For	each	pixel	in	one	input	image,	the	DIM	technique	can	effectively
find	the	corresponding	pixel	in	another	image,	allowing	for	the	creation	of	a	dense	3D	point	cloud.	The	quality	of	a	point	cloud	from	DIM
depends	on	characteristics	such	as	geometry	of	each	stereo	pair,	radiometric	distortions	and	complexity	of	the	scene.	DIM	point	clouds
are	usually	of	higher	density	compared	to	Lidar	point	clouds	but	also	present	rough	surfaces	and	deformed	boundaries	of	buildings	due	to
mismatches	or	excessive	interpolations.	A	stereo	pair	of	colour-infrared	(CIR)	digital	aerial	imagery	derived	in	May	2014	was	used	with	an
approximate	overlap	of	60%	and	a	base-to-height	ratio	value	of	0.30.	A	DIM/CIR	point	cloud	was	extracted	applying	the	SGM	stereo
method	using	the	ERDAS	IMAGINE	package.	Table	1	depicts	some	relevant	attributes	of	the	two	datasets.

	
	 Lidar DIM
Data	collection Raw	point	cloud A	stereo	pair	of	CIR	imagery
Sensor ALS	60 DMC	camera
Average	point	spacing 40	cm 20	cm



Horizontal	accuracy 8	cm 25	cm
Vertical	accuracy 20	cm 30	cm

Table	1,	Properties	of	the	two	datasets	for	building	classification.

Clearing	vegetation
As	a	first	step	of	the	procedure,	vegetation	was	removed	from	the	data.	In	the	Lidar	point	clouds	this	was	achieved	using	scanline	smooth
filtering.	In	this	method,	a	normal	vector	is	computed	for	all	points	in	the	point	cloud.	A	normal	vector	is	a	mathematical	representation	of
the	slope	of	the	surface	that	is	represented	by	the	point	cloud.	It	points	in	a	perpendicular	direction.	For	instance,	a	flat	rooftop	will	have	a
normal	vector	pointing	upwards,	while	a	vertical	wall	will	have	a	vector	pointing	sideways.	In	vegetation,	the	normal	vector	is	likely	to	point
in	many	different	directions	for	each	vegetation	point.	The	normal	vectors	were	computed	using	the	open-source	package	CloudCompare
by	triangulating	the	point	clouds	towards	a	mesh	and	taking	the	vectors	perpendicular	to	the	mesh	triangles	as	normal	vectors.	Each	value
of	the	z	coordinate	of	the	normal	vector	was	subsequently	smoothed	by	averaging	them	with	the	neighbouring	z	coordinates	of	normal
vectors	in	the	same	scanline.	Now	that	the	slope	of	the	surface	was	known	for	each	point,	all	points	with	a	slope	steeper	than	30	degrees
were	removed.	This	corresponds	to	the	maximum	allowable	value	of	a	roof	slope	according	to	the	Greek	urban	planning	authority	for
typical	cases	of	buildings.	Possible	remaining	vegetation	points	could	be	eliminated	using	other	metrics	such	as	roughness,	using	the
scanline	smooth	filtering	technique	to	remove	points	whose	roughness	values	are	higher	than	0.10m.	The	results	are	shown	in	Figure	2.	

In	the	point	cloud	constructed	with	DIM,	the	same	filtering	process	is	not	feasible.	Due	to	errors	that	are	inherent	to	DIM	processing,
surfaces	become	very	rough	and	buildings	outlines	are	shaped	inaccurately.	The	near-infrared	(NIR)	channel	is	a	very	good	source	of
information	about	the	presence	of	vegetation.	A	common	way	to	classify	vegetation	is	to	compute	a	Normalised	Differential	Vegetation
Index	(NDVI).	It	was	calculated	for	each	point	as	the	normalised	difference	between	the	red	and	near-infrared	values.	The	computed	NDVI
values	were	used	to	segment	vegetative	areas	from	the	scene	content	by	thresholding.	The	results	are	shown	in	Figure	3.	In	case	of	lack
of	NIR	channel,	machine	learning	techniques	could	be	used	to	detect	vegetation.

Ground	filtering
The	second	step	was	the	removal	of	the	bare	earth.	Since	the	urban	scenes	rarely	present	a	lot	of	relief,	a	morphological	operator	is
suitable	for	the	extraction	of	the	bare	earth.	A	sparse	point	cloud	of	the	bare	earth	was	obtained	by	selecting	the	deepest	point	inside	a
120m	window	along	the	scanline	of	the	point	cloud.	The	window	size	depends	on	the	expected	size	of	the	largest	building	in	the	area	and
was	determined	by	visual	inspection.	Then,	an	integrated	and	comprehensive	point	cloud	of	the	bare	earth	was	extracted.	First,	a	mesh
was	created	using	the	sparse	point	cloud.	Then,	a	dense	point	cloud	of	the	bare	earth	with	the	same	point	density	of	the	initial	point	clouds
was	created	by	sampling	on	mesh.	The	bare	earth	points	of	the	point	clouds	cleared	from	vegetation	were	removed	using	a	closest	point
technique	in	CloudCompare.	

Clean-up
Once	vegetation	and	ground	had	been	removed,	the	buildings	were	extracted.	Only	points	with	normalised	heights	above	2.5m	were
considered	as	buildings	to	avoid	low	vegetation,	fences,	cars,	etc.	Finally,	the	density	of	each	point	was	calculated	using	a	search	area
with	a	2m	radius.	Clusters	that	were	too	small	to	be	a	building	(fewer	than	20	for	the	Lidar	point	cloud	and	fewer	than	55	for	the	CIR	point
cloud)	were	removed.	Figure	4	shows	the	resulting	buildings	as	identified	from	the	Lidar	data	and	the	DIM	data.

Results
In	the	Lidar	data,	a	95%	success	rate	of	completeness	and	correctness	was	achieved.	The	omission	error	comes	mostly	from	the	powerful
filtering	of	the	scanline	smooth	filtering.	Thus,	together	with	the	vegetation	which	was	almost	completely	removed,	local	complex	cases	of
small	extensions	or	additions	of	large	buildings	were	incorrectly	removed,	increasing	the	false	negatives.	The	false	positives	that	were
observed	were	associated	with	remaining	cases	of	dense	and	high	trees.	The	above	success	rates	show	that	simple	and	efficient	filtering
techniques	which	enhance	the	geometric	properties	of	each	point	may	be	used	to	extract	buildings	from	Lidar	point	clouds.	Satisfactory
success	rates	were	also	achieved	in	the	DIM	point	cloud,	with	a	completeness	and	correctness	of	90%.	The	use	of	the	NDVI	removed	the
vegetation	completely.	However,	false	negatives	and	false	positives	were	observed	due	to	mismatches	at	complex	cases	of	small
buildings	and	excessive	interpolations	respectively.	Compared	to	the	Lidar	results,	the	DIM	approach	achieved	lower	success	rates	due	to
its	sensitivity	in	occlusions,	complex	scenes,	radiometric	differences	and	textureless	areas.	This	results	in	deformed	boundaries	of
buildings	and	rough	surfaces.	Thus,	even	though	the	two	approaches	have	similar	success	rates,	the	quality	of	the	detected	buildings	is
not	the	same.	This	restricts	the	use	of	the	DIM	point	clouds	for	further	applications	such	as	3D	modelling.	This	weakness	may	be
overcome	with	more	advanced	algorithms.	Under	these	conditions,	the	DIM	point	clouds	may	give	promising	results	as	the	basis	for
accurate	and	cost-effective	applications	in	3D	modelling,	cadastre	and	urban	studies.
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