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SEGMENTING	AND	ANNOTATING	MULTI-
SCALAR	3D	HERITAGE	DATA

Deconstructing	digital	cultural
heritage

Whether	as	2D	drawings	or	3D	point
clouds,	digital	cultural	heritage	is
becoming	the	norm	in	heritage
documentation	nowadays.	However,	raw
digital	data	still	requires	manual	labelling
in	order	to	add	tangible	information	to	the
otherwise	strictly	geometric	data.	This
article	presents	an	algorithmic	approach
to	systematically	deconstructing	and
semantically	annotating	3D	heritage	data
into	distinct	elements.	The	developed
method	helps	alleviate	labelling	tasks	and
feeds	training	data	for	future
developments	in	artificial	intelligence-
based	segmentation.

The	importance	of	proper	heritage
documentation	continues	to	increase	in
the	face	of	potential	damage	by	both
natural	and	human	threats.	In	recent
decades,	developments	in	geomatics

have	made	3D	scanning	easier	and	more	feasible	for	conservation	actors.	Great	strides
have	been	achieved	in	the	field	of	photogrammetry	and	laser	scanning,	two	of	the	most
dominant	forms	of	3D	data	generation	in	the	heritage	documentation	domain.	In	support	of
heritage	management,	systems	such	as	3D	GIS	and	heritage	building	information
modelling	(HBIM)	have	also	been	developed.

Tackling	the	two	main	bottlenecks
The	main	bottleneck	in	this	process	of	creating	a	unified	multi-stakeholder	heritage
management	system	is	the	manual	digitization	and	labelling	of	elements	on	the	point

cloud.	This	is	necessary	in	order	to	properly	understand	the	scene	and	thus	perform	meaningful	analysis	through	the	3D	GIS	or	HBIM
frameworks.	While	significant	progress	can	also	be	observed	in	the	use	of	artificial	intelligence	in	performing	these	tasks,	this	too
encounters	a	bottleneck	in	the	form	of	the	availability	of	training	data.	Furthermore,	in	the	heritage	domain,	the	diversity	of	architectural
styles	around	the	world	presents	an	additional	layer	to	this	problem.	The	developed	approach	attempts	to	tackle	these	two	bottlenecks	at
the	same	time.	Firstly,	the	use	of	algorithmic	or	rules-based	approaches	generates	labelled	datasets	rapidly	and	precisely	enough	for
certain	simpler	case	studies.	Secondly,	results	can	thereafter	be	reused	for	training	data	as	a	sort	of	boot-strapping	method	in	any	future
machine	learning	–	or	indeed	deep	learning-based	–	approaches.

Figure	1:	Photogrammetric	processing	in	DBAT	(left)	and	the	generated	metrics	(right).

Quality	control
Prior	to	performing	operations	on	the	point	cloud	itself,	a	proper	quality	control	is	necessary.	This	aspect	of	3D	heritage	documentation	is
essential,	yet	in	practice	often	forgotten.	While	visual	aspects	may	enamour	users,	geometric	precision	is	nevertheless	an	integral	part	of
any	heritage	archiving	effort.	Indeed,	surveyors	and	geomatics	engineers	have	the	obligation	to	uphold	the	geometric	quality	of	geospatial
products,	and	even	more	so	when	they	must	guarantee	the	use	of	the	said	products	for	long-term	heritage	archiving.



In	photogrammetry,	for	example,	the	rise	of	structure	from	motion	(SfM)	and	dense	matching	algorithms	produces	visually	impressive
results.	However,	the	black-box	nature	of	SfM	software	means	that	quality	control	is	more	elusive	to	perform.	To	address	this	problem,	the
author	and	his	team	developed	a	protocol	to	extract	quality	metrics	from	SfM	photogrammetry	projects	using	the	damped	bundle
adjustment	toolbox	(DBAT)	(see	Figure	1	for	an	example).	Using	this	open-source	method	for	photogrammetric	quality	assessment
enables	problems	in	the	project	to	be	identified	early	and	therefore	rectified	before	the	error	propagates	further.	Amongst	other	things,
DBAT	provides	classical	photogrammetric	metrics	which	are	often	missing	in	modern	black-box	SfM-based	3D	reconstruction	software,
e.g.	external	orientation	covariance	matrix,	intersection	angles,	etc.

Multi-scalar	division
After	the	quality	of	the	project	has	been	guaranteed,	the	resulting	point	cloud	may	be	manipulated	further.	The	first	step	in	the	author’s
developed	approach	is	to	systematically	divide	3D	heritage	data	into	multiple	scale	steps.	For	example,	the	first	scale	step	involves	large
areas	surrounding	a	certain	site	which	may	be	scanned	by	unmanned	aerial	vehicles	(UAVs	or	‘drones’).	The	second	step	may	then
concern	single	buildings,	which	may	be	reconstructed	by	terrestrial	laser	scanning	(TLS)	or	photogrammetry.	A	third	step	may	then	involve
more	detailed	parts	of	the	building,	i.e.	architectural	elements	such	as	pillars,	walls,	floors,	etc.	This	coarse-to-fine	segmentation	approach
helps	the	algorithmic	functions	to	create	a	systematic	hierarchy	of	semantic	information,	as	well	as	greatly	reduce	processing	time.	Figure
2	illustrates	this	multi-scalar	division	on	a	case	study	performed	on	the	16th-century	Kasepuhan	palatial	complex	in	Cirebon,	Indonesia.

Figure	2:	Multi-scalar	hierarchization	of	a	cultural	heritage	dataset.

The	multi-scalar	approach	also	attempts	to	accommodate	the	various	3D	sensors	available	today.	Indeed,	each	method	may	be	suited	for
a	certain	scale	level	but	not	for	others,	so	a	hierarchical	structuring	of	this	data	can	also	be	useful	for	data	management	purposes.

Segmentation	and	annotation
Following	the	multi-scalar	paradigm	which	has	been	previously	established,	the	deconstruction	then	starts	with	the	segmentation	of
buildings	from	a	larger	point	cloud,	i.e.	that	of	the	surrounding	complex.	This	was	performed	with	the	help	of	pre-existing	2D	GIS	files.
Such	GIS	files	are	often	already	available	for	heritage	sites,	but	a	quick	vectorization	based	on	satellite	or	UAV	images	is	also	possible	if
such	data	is	absent.	The	use	of	GIS	also	presents	another	advantage:	semantic	class	and	information	are	embedded	as	attributes	in	GIS
layers	and	entities.	The	developed	‘cookie-cutter’	algorithm	thus	performs	geometric	segmentation	using	the	GIS	vector	polygons	as
guides.	The	semantic	attribute	linked	to	each	polygon	entity	may	thereafter	be	annotated	automatically	to	the	segmented	result.	Figure	3
shows	the	result	of	such	an	operation,	whereby	the	GIS	vector	acted	as	a	2.5D	mould	to	segment	the	raw	point	cloud.	Automatic	labelling
using	GIS	attributes	means	that	the	resulting	building	point	clouds	are	queryable	in	the	basic	database	sense.

The	result	of	this	segmentation	–	from	heritage	complex	to	heritage	buildings	–	consists	therefore	of	individual	buildings	with	semantic
information	derived	from	the	original	GIS	file	and	geometric	data	from	the	original	point	cloud.	In	this	regard,	it	presents	an	example	of
instance	segmentation	as	opposed	to	the	more	general	semantic	segmentation.	As	far	as	the	segmentation	quality	is	concerned,	the
author’s	algorithm	scored	an	F1	index	of	89.32%	on	the	tested	dataset	using	this	approach.

Figure	3:	The	â€˜cookie-cutter'	style	point	cloud	segmentation	and	semantic	annotation.

Further	deconstruction	concerns	the	disassembling	of	the	buildings	(results	of	the	previous	step)	into	architectural	elements.	Various
geometric	rules	were	used	in	the	process,	not	only	to	perform	simple	segmentation	but	also	to	attribute	classes	to	each	instance.	The
author	and	his	team	developed	several	functions	to	perform	the	detection	and	classification	of	two	architectural	elements	commonly	found
throughout	heritage	data,	e.g.	pillars/columns	and	roof	frames.	The	detection	algorithm	is	based	on	several	algorithms	such	as	RANSAC,
Hough-Transform	and	nearest-neighbour	segmentation.	The	pillar	detection	algorithm	was	tested	on	five	different	datasets	with	various
architectural	styles,	and	successfully	performed	the	task	with	an	average	F1	score	of	88.97%.	It	also	managed	to	correctly	determine	the
number	of	‘pillars’	(defined	as	building	supports	having	a	circular	cross-section,	shown	in	red	in	the	‘classification’	column	of	Figure	4)	as
opposed	to	‘non-pillars’	(shown	in	blue	in	the	‘classification’	column	of	Figure	4).

Figure	4:	Results	of	the	segmentation	and	classification	of	pillars	on	the	five	tested	datasets.4

Concluding	remarks
The	approach	described	in	this	article	had	the	final	objective	of	aiding	the	process	of	point	cloud	segmentation	and	classification	in	the
context	of	cultural	heritage	documentation.	In	this	regard,	the	developed	algorithm	showed	promising	results	with	surprisingly	good
accuracy.	Indeed,	the	use	of	this	type	of	heuristic	approach	may	well	be	sufficient	in	many	simple	cases,	without	the	need	to	resort	to
machine	learning.	Furthermore,	the	author	proposes	a	thorough	workflow	with	the	inclusion	of	geometric	quality	assessment	at	the
beginning	of	the	process.	However,	the	algorithm’s	efficacy	may	encounter	more	constraints	when	dealing	with	a	more	diverse	dataset,
which	is	the	case	in	the	cultural	heritage	domain.	It	is	therefore	also	interesting	to	explore	the	use	of	this	type	of	algorithmic	approach	to
point	cloud	segmentation	in	generating	training	datasets	which	would	be	useful	to	support	artificial	intelligence-based	approaches	in	the
future.
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