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A FEATURE-BASED SEMANTIC
SEGMENTATION ALGORITHM FOR
POINT CLOUD CLASSIFICATION

Deep learning for ground
and non-ground surface
separation

As a division of machine
learning, deep learning (DL)
has been achieving
unparalleled success in

e [y image processing and
recently demonstrated huge
potential for point cloud
analysis.

Precise ground surface
topography is crucial for 3D
city analysis, digital terrain
modelling, natural disaster
monitoring, high-density map
generation and autonomous
navigation, to name but a
few. Deep learning (DL), a
division of machine learning
(ML), has been achieving
unparalleled success in
image processing, and
recently demonstrated huge

: potential for point cloud
analysis. Thls artlcle presents a feature based DL algorlthm that classifies
ground and non-ground points in aerial laser scanning point clouds.

Recent advancements of remote sensing technologies make it possible to
digitize the real world in a near-automated fashion. Lidar-based point clouds
are a type of remotely sensed georeferenced data, providing detailed 3D
information on objects and the environment, and have been recognized as one
of the most powerful means of digitization. Unlike imagery, point clouds are
unstructured, sparse and of irregular data format. This creates many
challenges, but also provides huge opportunities for capturing geometric
details of scanned surfaces with millimetre accuracy. Classifying and
separating non-ground points from ground points greatly reduces data
volumes for consecutive analysis of either ground or non-ground surfaces, which consequently saves costs and labour, and
simplifies further analysis.

Machine learning and deep learning



Machine learning methods with a long history of automatic classification include well-known methods such as Support Vector
Machines and Random Forest. However, they are often criticized for their limited generalization capability due to the use of
shallow architectures. On the contrary, artificial neural networks with several hidden (internal) layers use a so-called deep
architecture which has been applied in recent years with unprecedented success. The main challenge of implementing a
supervised DL method is that it requires a sufficient amount of labelled training and validation data to tune a successful
classification model. Many researchers believe that the end-to-end DL approach can extract useful features automatically from
raw data, and therefore no feature engineering is required, but this is not always true. This article argues that the use of
appropriate features can solve classification problems more efficiently while using fewer resources, i.e. a small number of layers
and less training data. However, implementing a feature-based DL method needs a clear understanding of both problem and
data structure to extract powerful features. The architecture presented in this article, which was originally proposed in the paper
by Nurunnabi et al. (2021), is a feature-based DL classification approach that labels ground and non-ground points in airborne
laser scanning (ALS) point clouds.

Feature extraction

The proposed algorithm consists of two steps. The first step performs feature design and extraction, while the second step
develops the DL architecture (Figure 1). Based on an extensive review of state-of-the-art literature, the authors selected the most
promising and successful features used for defining the characteristics of points based on their local neighbours. Features are
derived using spherical and cylindrical neighbourhoods of each point of the data. A spherical neighbourhood with a user-defined
radius is used to obtain 3D geometric features (GFs) based on the covariance matrix generated by the coordinates of the
neighbour points (x, y, z). Principal component (PC) analysis is performed to estimate eigenvalues and eigenvectors from the
covariance matrix that are used to derive the necessary features. The most common 3D GFs, also known as covariance
features (CovFs), are: point normal, curvature, first PC, three eigenvalues, linearity, planarity, scattering, omnivariance,
eigentropy, plan offset and verticality. Vertical infinite cylindrical neighbourhood (with the same radius as the spherical
neighbourhood) is used to obtain cylindrical features that relate to the heights of the points (z values). These are the minimum,
range, mean, and variance values of z, and the relative position of the point of interest within its neighbourhood. Additionally,
point density, return number, intensity, positive openness and echo ratio are used.

Figure 1: Workflow of the DL algorithm.

Deep learning architecture

The proposed architecture develops a binary classifier and follows a straightforward artificial neural network (NN) workflow. The
inputs for the network are the feature vectors, and the outputs are the labels of ground (1) or non-ground (0). Fully connected
network layers are used with a rectified linear unit (ReLU) activation function for the hidden layers, and a Sigmoid function is
used for the output layer. Binary cross entropy is used as loss function, while the use of an Adam optimizer speeds up the model
training process. A so-called He initialization strategy and Batch normalization are used to reduce the influence of vanishing and
exploding gradients. Evaluation of the model is needed to fine-tune the necessary hyper-parameters. The network consists of
five hidden layers with 50 neurons per layer. Inputs are processed with a mini-batch size of 128. The network is trained with 50
epochs and the one that achieves the highest accuracy is selected as the final model. L2 regularization with a learning rate of is
used to avoid overfitting. The relevance of the features is studied in several groups (Models) to identify the optimum ones
producing the best results.

Figure 2: 3D aerial laser scanning point cloud of Dudelange, Luxembourg, used as test dataset. The dataset is
coloured with RGB values.

Open-access airborne Lidar dataset

The newly developed algorithm can be demonstrated based on an open-access airborne Lidar dataset provided by the
Administration du Cadastre et de la Topographie (ACT) of Luxembourg. Average point density, horizontal and vertical precision

of the data are 15/m?, +3cm and +6cm, respectively. The data is organized into 500m 500m tiles, each of which contains on
average 5-7 million points. The points are labelled into classes, e.g. soil, vegetation, buildings, water, bridges, power lines and
unclassified. Additional manual editing was performed to obtain more accurately classified data as ground and non-ground
points (Figure 3). Two tiles from a semi-urban area (Dudelange, Luxembourg) were selected for use with the algorithm. The test
dataset has a height difference of around 20m between the highest and the lowest points.

Demonstrating the algorithm

From the selected tiles, one tile was used for training and validation, while part of the other tile was selected as test data (Fig. 2).
The training-validation tile was sliced into five segments, and one of them was randomly selected as the validation set. The
training, validation and test sets consist of 3,481,758 points, 650,764 points and 970,387 points, respectively. The required
input vectors were generated with a neighbourhood size of 100cm radius and the proposed algorithm was applied using
different combinations of features. Model 3 was identified as the best group of features as it achieves the highest accuracy
among the three considered models. It consists of a set of 17 feature vectors: point normal, curvature, linearity, planarity,
scattering, omnivariance, eigentropy, plane offset, verticality, point height z, range-z, mean-z, variance-z, point density, positive
openness, echo ratio and intensity. Model 3 achieved the highest precision of 99.77% for ground surface extraction, an F4 score

of 97.5% and 97.8% for labelling ground and non-ground points respectively, and an overall model accuracy of 97.7% (Figure 4).

Figure 3: 2D plot of ground truth for the test dataset, showing ground (sky-blue) and non-ground (yellow) points.



Separating ground from non-ground points

The algorithm for pointwise classification (also known as semantic segmentation) of point clouds used three models which are
three different combinations of extracted pointwise local features. The inputs for the networks are point features, rather than the
raw point coordinates (x, y, z). It can be concluded that accurate estimation of the height values of the points has significant
impact on results.

The discussed approach could be successful as a so-called work-horse method to efficiently separate ground from non-ground
points. It combines a high accuracy with relatively low computational load. This distinguishes this method from recent end-to-end
deep learning point cloud methods, which typically require heavy and extensive training and are therefore more difficult to
perform on a standard desktop computer. The non-end-to-end approach described here accepts more information-rich input
(i.e. the feature vectors) and therefore requires fewer internal layers. As a consequence, fewer parameters (i.e. the weights of
the neuron connections) have to be determined, which makes the method much lighter and more efficient.

Figure 4: 2D plot of the classification results for the test dataset, showing correct ground points (sky-blue), correct
non-ground points (yellow) and misclassified points (red and black).

Concluding remarks

The proposed feature-based DL algorithm classifies ground and non-ground points in ALS point clouds with a high rate of
accuracy. It presents a fully connected deep neural network approach to develop a binary classifier. The authors showed in the
original paper that, unlike most feature-based algorithms, the new algorithm does not require multi-scale neighbourhoods.
Hence, it can reduce a significant amount of the computational complexity and saves time when compared to many existing
feature-based algorithms. The new classification algorithm is simple but efficient to perform. This is because the architecture is
shallow but powerful, which reduces the computational burden, and extracts both ground and non-ground points efficiently in the
presence of steep slopes, non-smooth terrain and with significant height variability. However, the proposed feature-based DL
algorithm requires a thorough understanding of both the saliency features used as input vectors, and the data properties for
tuning the hyper-parameters in the model-building process in order to achieve the highest classification accuracy.
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