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Fundamentals to clustering
3D point cloud data

Why is unsupervised
segmentation the key to
sustainable automation?
Automation in point cloud
data processing is central for
building efficient decision-
making systems and to cut
labour costs. The
identification of objects of
interest in these massive
datasets constitutes the
basis of many applications.
While new supervised deep-
learning architectures show
promising results, the
amount of available labelled
3D data is often insufficient
for a good generalization.
This is where unsupervised
approaches and clustering
shine.

What is data
clustering?
Clustering algorithms allow
data to be partitioned into
subgroups, or clusters, in an
unsupervised manner.
Intuitively, these segments
group similar observations
together. Clustering
algorithms are therefore

highly dependent on how one defines this notion of similarity, which is often
specific to the field of application.

Clustering algorithms are often used for exploratory data analysis. They also
constitute the bulk of the processes in AI classification pipelines to create
nicely labeled datasets in an unsupervised/self-learning fashion.

Within the scope of 3D Geodata, clustering algorithms (also defined as
unsupervised segmentation) permit to obtain a segment soup that becomes
the backbone of several processes such as feature extraction, classification or
3D modeling as illustrated below.

Figure 1: Different clustering strategies applied to a noisy point cloud of a room (strip vs spatial aggregation). One
can see that spatial proximities seems a choice criterion to define a similarity measure.

They most often act in addition to a dimensionality reduction algorithm that allows the different attributes (called dimensions) to
be viewed in two or three dimensions. If a “view” presents sufficient decorrelation, a clustering algorithm can be used to form
sub-groups of these points:  the clusters. In this way, the relationships between the points can be visually represented.
Alternatively, instead of representing the entire data, only one representative point per cluster can be displayed.

Once clusters have been identified, data can also be viewed using only one representative per cluster and discarding the others.



Why is this useful?
Clustering algorithms are particularly useful in the frequent cases where it is expensive to label data. Take the example of
annotating a large point cloud. Annotating each point by what it represents can be a long and tedious job, to the point that the
people doing it can unintentionally introduce errors through inattention or fatigue. It is cheaper and perhaps even more efficient to
let a clustering algorithm group similar points together and then only involve a human operator when assigning a label to the
cluster.

Figure 2: Simple illustration over a chair of one advantage within semantic segmentation workflows: easier to label
some representative segments rather than all the individual points.

Thus, clustering algorithms can be used to extend a property of one of the points in the same cluster to all the points in the same
cluster (in the previous example, the represented chair object.).

We will define several criteria to be optimized to define an interesting partition of the data. These are then used to derive some
of the best-known clustering algorithms (K-means, K-NN, Mean-shift…)

How to know if the clustering is representative
In the case of unsupervised algorithms, the purpose of the algorithm is less obvious to define than in the case of supervised
algorithms, where there is a clear task to accomplish (E.g. classification or regression). The success of the model is therefore
more subjective. The fact that the task is more difficult to define does not prevent a wide range of measures of the performance
which I will detail below.

Distances and similarities
Clustering means grouping together the closest or most similar points. The concept of clustering relies heavily on the concepts of
distance and similarity.

These concepts will be very useful to formalize:

(1) How close two observations are to each other;
(2) How close an observation is to a cluster;
(3) How close two clusters are to each other.

 

Figure 3: Simple illustration of some distances between two observations (1); between one observation and a cluster
(2), between two clusters (3). Â© Florent Poux, Ph.D.

The most commonly used examples of distances are the Euclidean distance, and the Manhattan distance. The Euclidean
distance is the “ordinary” straight-line distance between two points in Euclidean space. The Manhattan distance is so-called
because it corresponds in two dimensions to the distance traveled by a taxi on the streets of Manhattan, which are all either
parallel or perpendicular to each other.

Thus, a distance can be used to define a similarity: the further apart two points are, the less similar they are, and vice versa. For
injecting a very tiny bit of math, we can transform a distance d between x and y into a similarity measure. Another common way
to define similarity is to use the Pearson correlation which will take into account the shape of the distribution rather than their
amplitude, which the Euclidean distance mainly takes into account. The choice of the distance measure is therefore important.

Cluster shape
The shape of a cluster is an important element that we initially describe as:

(1) Tightened on themselves: two close points must belong to the same cluster
(2) far from each other: two points that are far apart must belong to different clusters.

Often, we search for clusters tighten on themselves. Let us translate these properties with an example, using the Euclidean
distance. First, we can compute the centroid of a cluster (the barycentre of the points of this cluster) pretty easily. The
homogeneity of a cluster can then be defined as the average of the distances of each of the points contained in this cluster to the
centroid. In this way, a tightened cluster will have a lower heterogeneity than a cluster of scattered points. Then, to characterize
not one cluster, but all clusters in our dataset, we can calculate the average of the homogeneity of each cluster.

Secondly, we want the clusters to be far from each other. To quantify this, we usually define the separation of two clusters as the
distance between their centroids. Once again, we can calculate the average of these quantities on all the pairs of clusters
obtained.

Figure 4: Simple illustration about how homogeneity and separation gives intuitive sense to better characterize
clusters.



We now have two criteria to optimize: homogeneity and separation. To make it easier for us, we can group them into a single
criterion, the Davies-Bouldin index. The idea of this index is to compare intra-cluster distances (homogeneity) — which we
want to be low — to inter-cluster distances (separation), which we want to be high. For a given cluster, this index is all the weaker
as all the clusters are homogeneous and well separated.

Another way to quantify how well a clustering meets these two requirements (homogeneity and separation) is to measure the so-
called silhouette coefficient. To assess whether a point belongs to the “right” cluster. For this, we try and answer
(mathematically) two questions:

Is p close to the points of the cluster to which it belongs?
Is the point far from the other points?

Cluster stability
Another important criterion is the stability of the clustering: if I run the algorithm several times on the same data with a different
initialization, or on different subsets of the data, or on the same slightly noisy data, do I get the same results? This criterion is
particularly relevant when choosing the number of clusters: if the number of clusters chosen corresponds to the natural structure
of the data, the clustering will be more stable than if it does not.

Figure 5: An example of the â€œparameter supervisionâ€  for finding clusters and its impact.

On the example above, an algorithm that tries to determine 3 clusters will reasonably find the three clusters we see. But if it is
asked to determine 4 clusters, the distribution in these 4 clusters will be more random and will not necessarily be twice the
same. This is one way to determine that 3 is a better number of clusters than 4.

Compatibility with domain-specific knowledge
Very often, we will also evaluate a clustering algorithm “by eye” and see if the proposed clusters make sense. Do the points
grouped in this cluster all represent the same object? Do the points in these two clusters represent different objects?

To do this more neatly, we can work on a dataset on which we know a reasonable partition of the data. We will then compare this
partition with the one returned by our clustering algorithm. For example, we can work with a point cloud partitioned by planar
shapes. The next step is to evaluate whether the groups formed by the clustering algorithm correspond to those defined a priori.

Figure 6: Example of taking a portion of a point cloud and creating a â€œplanar-labeledâ€  dataset to compare to
the clustering results.

It’s easy! It’s like evaluating a multi-class classification algorithm. But not so fast: if we are interested in whether the same objects
belong to the same cluster, it doesn’t matter whether this cluster is the first, the second, or the k-th cluster. Therefore, specific
performance metrics must be used to evaluate the concordance of two partitions of the dataset.

An example of these measures is the Rand index (and its more robust Adjusted Rand Index). The Rand index is the proportion of
pairs of points that are grouped in the same way in both partitions: either because, in both cases the points belong to the same
cluster, or because, in both cases, the points belong to different clusters.

Conclusion
Unsupervised and self-learning methods are very important for solving automation challenges. Particularly, in the era of deep
learning, creating labeled datasets manually is tedious, and ways to alleviate this process are more than welcome. Clustering
algorithms provide crucial solutions for this, and are used to partition a dataset into sub-groups of similar observations:

They can be used to better understand the data;
They can be used to facilitate data visualization;
They can be used to infer data properties.

Then, to evaluate a clustering algorithm, we can look at:

the shape of the clusters it produces (are they dense, well separated). The silhouette coefficient is often used here;
the stability of the algorithm;
the compatibility of the results with domain-specific knowledge, which can be evaluated using enrichment measures.
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