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AUTOMATING	THE	IDENTIFICATION	OF
HIDDEN	ARCHAEOLOGICAL	SITES	USING
3D	POINT	CLOUDS

Lidar	deep	learning	for	ancient
Maya	archaeology

While	it	is	possible	to	capture	ancient
Maya	sites	hidden	beneath	jungle	canopy
in	remote	locations	using	airborne	Lidar,
identifying	them	is	still	a	time-consuming
process.	Typically,	3D	point	clouds	are
converted	to	2D	topographic	relief	images
that	tend	to	miss	smaller	archaeological
mounds	that	are	critical	to	understanding
human-environment	interactions	with
implications	for	today’s	global	challenges.
This	project	directly	analysed	Lidar	data
using	deep	learning	to	dramatically	speed
up	the	processing	time	and	increase	the
accuracy	of	archaeological	site
identification.

In	the	past	decade,	airborne	Lidar	has
captured	thousands	of	previously
undocumented	ancient	Maya
archaeological	features,	confirming	the
vast	scale	of	classic	(250–800CE)	Maya

cities.	However,	archaeologists	face	two	major	challenges.	First,	there	is	a	deluge	of	Lidar
data	that	requires	significant	and	costly	manual	labour	to	interpret.	Second,	automated
and	manual	data	processing	techniques	still	miss	nearly	50%	of	small	archaeological
mounds	due	to	topography	and	variations	in	vegetation	height	and	density.		

Previous	research
To	address	the	first	challenge,	a	few	archaeologists	started	to	employ	deep	learning,	a
sub-field	of	machine	learning,	which	has	demonstrated	state-of-the-art	performance	on
automated	object	recognition	tasks.	While	successful,	this	previous	research	was	limited

to	the	application	of	deep	learning	to	2D	data,	excluding	available	3D	data,	and	did	not	focus	on	smaller	archaeological	features.	This
project	is	unique	because	it	addresses	this	gap	using	deep	learning-based	processes	that	can	classify	archaeological	sites	directly	from
Lidar	3D	point	cloud	datasets	and	improve	the	accuracy	of	identifying	small	archaeological	features	beneath	deep	canopy	in	diverse
environmental	conditions.

Figure	1:	Archaeological	Site	of	CopÃ¡n,	Honduras.

Case	study
Lidar	data	from	the	UNESCO	World	Heritage	Site	of	Copan	(Figure	1	and	2)	Honduras,	was	used	as	the	primary	dataset	to	develop	new
deep	learning	models	and	subsequently	compare	the	classification	accuracy	of	deep	learning	models	using	2D	and	3D	data.	From	the	fifth
to	ninth	centuries	CE,	Copan	–	often	referred	to	as	the	‘Athens	of	the	Maya	World’	–	was	the	cultural	and	commercial	centre	of	a	powerful
ancient	Maya	kingdom.	The	city	has	awed	explorers,	archaeologists	and	visitors	since	the	1500s	and	is	the	most	thoroughly	excavated
Maya	site.	In	427CE,	Yax	Kuk	Mo	became	Copan’s	first	dynastic	ruler,	founding	a	dynasty	that	encompassed	16	rulers	and	spanned



almost	400	years	until	succumbing	to	environmental	and	sociopolitical	pressures	that	befell	the	kingdoms	of	the	Maya	Southern	Lowlands.
Copan’s	location	in	a	narrow	valley	with	altitudes	ranging	from	569–1,408m	along	the	Copan	River	results	in	varied	topography,	diverse
vegetation	and	varied	land-use	practices,	and	is	therefore	representative	of	the	challenges	faced	across	the	Maya	region	in	identifying
archaeological	sites	from	Lidar.

Figure	2:	Aerial	view	of	CopÃ¡nâ€™s	civic-ceremonial	Core	(Courtesy:	Richard	Wood,	Heather	Richards-Rissetto,	Christine
Wittich,	UNL)

Project	data:	archaeological	and	Lidar
In	the	late	1970s	and	early	1980s,	the	Copan	Archaeological	Project	carried	out	a	simple	mapping	survey	using	a	plane	table	and	alidade,
over	25km2	around	Copan’s	main	civic-ceremonial	centre.	The	analogue	maps	were	georeferenced	and	digitized	to	establish	a	Copan
Geographic	Information	System	(GIS).	In	2013,	the	MayaArch3D	Project	captured	Lidar	data	for	the	same	spatial	extent	using	a	Leica
ALS50	Phase	II	system	mounted	on	a	Piper	Aztec	aircraft.	The	target	point	density	was	≥	15	pulses/m2	and	all	areas	were	surveyed	with
an	opposing	flight	line	sidelap	overlap	of	≥	50%.	The	average	first-return	density	was	21.57	points/m2	and	the	ground	return	density
averaged	2.91	points/m2.	Following	acquisition,	the	Lidar	data	went	through	several	(time-consuming)	stages	of	post-processing	that
incorporated	‘standard’	bare-earth	algorithms	and	semi-automatic	and	manual	methods	to	classify	3D	points	into	four	classes:	(1)
Vegetation	(green),	(2)	Ground	(yellow),	(3)	Archaeological	Features	(red),	and	(4)	Ruin	Grounds	(purple)	(see	von	Schwerin	et	al.,	2016)
(Figure	3).

Deep	Learning:	Object	Classification	and	Semantic	Segmentation
For	decades,	computer	vision	specialists	have	studied	the	problem	of	automating	object	classification	and	semantic	segmentation.
Convolutional	neural	networks	(CNNs)	have	proven	most	successful;	however,	they	require	large	amounts	of	labelled	training	data,	often
in	the	range	of	millions	of	images	that	are	pre-labelled	and/or	segmented	by	hand.	This	poses	a	difficulty	when	working	with	small
datasets,	typical	of	remote	sensing	and,	in	particular,	archaeology.	Previous	research	suggests	that	the	application	of	transfer	learning	–	a
machine	learning	method	that	improves	performance	using	knowledge	learned	from	a	previous	task	–	for	small	datasets	improves	model
accuracy.	In	terms	of	3D	shape	classification,	point-based	methods	have	demonstrated	some	of	the	highest	accuracy;	thus,	this	research
used	a	point-based	transfer	learning	architecture	to	identify	ancient	Maya	archaeological	sites.

Figure	3:	Example	of	3D	cloud	points	from	airborne	Lidar	of	CopÃ¡n,	Honduras.

Method
The	PointConv	(Wu,	Qi	and	Fuxin,	2019)	deep	learning	architecture	was	employed	to	identify	ancient	Maya	archaeological	sites	from
Copan’s	Lidar	data.	The	method	was	tested	against	CNN	processes	relying	on	2D	data,	using	Inception-v3,	to	determine	the	most
effective	approach.	In	addition,	data	augmentation	strategies	for	working	with	small	3D	datasets	were	evaluated.	The	results	of	these
experiments	demonstrate	that	the	PointConv	architecture	provides	greater	classification	accuracy	in	identifying	Maya	archaeological	sites
than	the	CNN-based	approach.	This	result	demonstrates	a	path	for	researchers	to	make	use	of	3D	point	cloud	data	directly	in	deep
learning	models	while	improving	accuracy	and	reducing	data	preparation	time.

Dataset	pre-processing
For	the	3D	model	training,	raw	laser	(LAS)	formatted	files	were	used	from	shapefiles	annotated	by	the	archaeologists.	Then,	10,024	points
for	each	input	data	file	were	uniformly	sampled	and	the	normal	vectors	were	computed	from	the	point	clouds.	The	primary	parameters	for
the	point	cloud	data	include	XYZ	coordinates	and	normal	vectors	using	CloudCompare.	For	the	2D	comparison,	hillshade	images	were
labelled	and	divided	into	two	sets	of	sub-images:	(1)	positive	class:	archaeological	structures	and	(2)	negative	class:	areas	without
archaeological	structures.	Both	subsets	included	background	comprising	3D	points	representing	diverse	topography	and	vegetation	type
and	density.

Data	augmentation	and	training	3D	and	2D	deep	learning	models
Large	amounts	of	data	are	needed	to	train	deep	learning	models,	but	the	Copan	dataset	was	not	large	enough;	therefore,	two	data
augmentation	methods	artificially	generated	new	data	from	the	existing	data	to	create	a	larger	and	more	variable	dataset:	(1)	random
rotation	and	(2)	jittering	via	Gaussian	noise.	The	same	data	augmentation	strategies	were	employed	for	the	3D	and	2D	models.	The	3D
training	dataset	comprised	142	positive	samples	(containing	archaeological	sites)	and	142	negative	samples	(only	natural	features).	The
2D	training	dataset	comprised	410	positive	samples	and	430	negative	samples	with	a	variety	of	hills,	mountains	and	flat	areas	(vegetation
was	removed	because	it	obscures	sites).	Through	data	augmentation,	the	dataset	size	was	tripled	for	both	3D	and	2D	model	training.	For
3D	and	2D	model	training,	80%	of	the	dataset	was	used,	and	the	remaining	20%	was	used	for	testing.

Results
The	3D	and	2D	deep	learning	models	were	evaluated	based	on	the	accuracy	of	the	test	datasets,	which	were	not	used	for	training.
Additionally,	the	models	were	evaluated	based	on	augmentation	methods.	Figure	4	shows	the	classification	accuracy	of	the	augmentation
methods.	The	3D	model	achieved	88%	accuracy	on	the	testing	data	without	augmentation,	91.7%	using	a	Gaussian	noise-based
approach,	92.4%	using	random	rotations,	and	95%	accuracy	with	combined	augmentation.	In	comparison,	the	2D	model	was	only	able	to
achieve	an	accuracy	of	87.8%	using	this	same	combined	augmentation	strategy.	In	part,	the	success	of	the	3D	deep	learning	results	from
the	inclusion	of	Z	elevations,	unlike	the	2D	hillshade	images.



Conclusion	and	future	work
While	airborne	Lidar	is	transforming	archaeology,	identifying	archaeological	sites	is	still	extremely	time-consuming	and	expensive	because
standard	filtering	algorithms	tend	to	fall	short.	In	the	Maya	region,	this	task	is	particularly	challenging	because	sites	are	hidden	below
jungle	canopy	and	appear	as	mounds	that	are	difficult	to	distinguish	from	natural	topography.	To	date,	only	a	few	deep	learning	projects
have	been	applied	to	archaeology,	and	these	have	employed	2D	approaches.	In	contrast,	this	project	illustrates	that	raw	3D	point	cloud
data	can	not	only	be	used	in	deep	learning	approaches	but	provides	higher	accuracy	in	identifying	ancient	Maya	sites	of	all	shapes	and
sizes.	Future	work	will	refine	the	employed	methods	and	incorporate	a	larger	dataset	of	ancient	Maya	sites	from	Belize	to	continue	to
disentangle	the	impacts	of	variable	topography	and	vegetation	not	only	for	deep	learning	approaches	but	also	for	understanding	what	we
can	learn	from	ancient	environmental	engineering.			

Figure	4:	Graph	illustrating	the	accuracy	of	deep	learning	withn	augmentation	methods.
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