
ARTICLE

QUALITY	BENCHMARKS	THROUGH
OPTIMISATION

Map	Generalisation
Decades	of	research	on	map
generalisation	have	resulted	in	an
abundance	of	heuristic	algorithms,
evaluation	of	the	performance	of	which	is
vital	for	choosing	the	most	suitable	for	a
certain	application.	Proper	evaluation
methods	are,	however,	missing.	The
author	proposes	an	approach	based	on
optimisation	methods	adopted	from	the
field	of	operations	research.	

Driving	to	your	holiday	destination,	you
may	wonder	why	the	idyllic	village	along
the	road	is	not	represented	on	your	map.
Is	it	because	a	cartographer	decided	to
omit	the	village	to	improve	map
readability?	It's	more	likely	today	that	a
computer	did	the	job,	as	‘map
generalisation',	the	decision	regarding
which	details	to	represent	at	a	certain	map
scale,	has	become	highly	automated.	The

map	in	Figure	1	(left),	for	example,	shows	a	village	represented	by	red-brown	polygons.	The	application	of	generalisation	using	a	region-
growing	algorithm	removes	the	entire	village	from	the	map	(Figure	1,	right).	This	happens	because	the	algorithm	employs	a	rule	merging
all	polygons	smaller	than	0.4	km2	with	their	most	similar	neighbour.	Is	this	a	good	rule?	Hard	to	say,	even	bearing	in	mind	the	criteria	by
which	a	good	map	is	made.

	

Requirements
An	obvious	way	to	improve	the	performance	of	map	generalisation	algorithms	is	to	increase	their	speed.	This,	however,	does	not	tackle	the
problem	of	arriving	at	satisfactory	solutions.	Here	optimisation	approaches	from	the	field	of	operations	research	would	appear	appropriate.
Generally	these	approaches	are	based	on	a	model	comprising	a	set	of	requirements	to	be	fulfilled	by	a	solution,	and	a	cost	function	that	is
to	be	minimised.	Solutions	obtained	with	this	optimisation	approach	can	be	used	as	benchmarks	for	evaluating	the	quality	of	heuristic
methods	such	as	the	abovementioned	region-growing	algorithm.

For	maps	consisting	of	polygons,	national	mapping	agencies	often	stipulate	that	the	area	of	each	polygon	should	exceed	a	pre-set	value;
this,	like	map	scale,	may	depend	on	the	type	of	object	it	represents.	Indeed,	this	requirement	can	be	applied	in	an	optimisation	approach.
Cost	function	needs	to	be	defined	such	that	it	reflects	the	quality	of	the	generalised	map.	The	measure	of	quality	of	the	generalised	map
should	reward	similarity	between	the	original	map	and	the	generalised	map	and	penalise	differences.	This	means	that	a	change	in	object
type	of	a	polygon	has	to	be	charged.	The	cost	of	such	change	can	be	defined	according	to	the	area	of	the	polygon.	The	type	of	change
can	also	be	reflected	in	function	by,	for	example,	penalising	change	of	cropland	into	grassland	less	than	change	of	cropland	into	forest.
The	cost	discrepancy	here	arises	from	semantic	similarity	between	cropland	and	grassland	being	much	greater	than	between	cropland
and	forest.

Optimisation
The	generalisation	problem	now	needs	to	be	expressed	in	a	form	readable	by	a	solver.	The	problem	of	generalising	a	polygon	map	can	be
formalised	as	an	integer	linear	program,	which	comprises	a	linear	objective	function	and	a	system	of	linear	inequalities	in	integer	variables.
In	this	form	the	problem	can	be	solved	by,	for	example,	applying	the	commercial	solver	CPLEX.	An	example	of	a	map	generalisation
solution	using	this	optimisation	approach	is	shown	in	Figure	2	(left).	In	this	map	the	area	of	each	generalised	polygon	is	larger	than	the
threshold	applied	and	therefore	the	object	type	of	just	a	few	small	polygons	needed	modification.	So	we	see	that	in	contrast	to	the	result	in
Figure	1,	the	village	is	still	there.	But	does	the	map	appropriately	represent	the	situation	on	the	ground?	The	upper	part	of	the	village
polygon	shows	a	long	and	narrow	annex.	Obviously,	with	cost	function	applied,	the	cost	of	converting	the	smaller	forest	(green)	polygons
into	village	was	less	than	converting	the	larger	village	polygon	into	forest	or	cropland.



It	is	not	necessary	to	study	the	details	of	the	optimisation	algorithm	used	by	the	solver	in	order	to	understand	how	it	produced	such	an
unsatisfactory	result.	The	solver	CPLEX	uses	an	exact	algorithm:	that	is,	it	guarantees	a	globally	optimal	solution	and	hence	can	be
treated	as	a	black	box.	One	can	simply	rethink	the	set	of	quality	criteria	and	requirements	and	restart	the	algorithm	with	a	revised	model.
To	avoid	long,	elongated	polygon	parts,	the	cost	function	was	modified	to	penalise	non-compact	polygons.	The	optimisation	algorithm	was
then	restarted,	resulting	in	a	map	that	better	reflects	the	situation	on	the	ground	(Figure	2,	right).	The	approach	thus	allows	map
generalisation	algorithms	to	be	improved	in	an	incremental	way.

	

Benchmarks
As	all	exact	algorithms	for	solving	integer	linear	programs	have	in	the	worst-case	scenario	exponential	running	time,	they	can	be	too	slow
for	generalising	large,	detailed	maps.	Still,	these	exact	algorithms	remain	valuable,	as	they	can	be	used	to	optimally	generalise	map
samples	and	thus	evaluate	the	performance	of	heuristic	algorithms.	The	optimisation-based	algorithm	can	be	made	faster	by	introducing
heuristics	that	yield	satisfying	solutions	with	respect	to	the	quality	measures.	Assessing	the	quality	of	these	heuristics	can	be	done	by
using	as	benchmarks	the	optimal	results	obtained	for	small	samples.	For	generalising	very	large	maps,	a	good	strategy	is	to	design
heuristics	that	segment	the	generalisation	problem.	The	resulting	smaller	instances	of	problem	can	be	solved	independently.	Introducing
heuristics	allows	for	generalisation	of	a	map	sheet	in	about	one	hour,	while	the	results	are	similar	to	those	of	the	exact	algorithm.

	

Lines	and	Buildings
We	have	discussed	above	the	case	in	which	both	original	and	generalised	map	consist	of	polygons.	Another	problem	is	the	generalisation
of	polygons	into	line	elements.	For	example,	in	a	large-scale	map	rivers	are	represented	as	polygons;	at	smaller	scales	rivers	need	to	be
represented	by	their	centre	lines.	Generalisation	can	be	done	by	computing	the	straight	skeleton	(Figure	3)	but	whether	this	can	be
integrated	into	an	optimisation	approach	is	still	an	open	question.

Can	the	above	optimisation	approach	be	applied	to	buildings,	too?	Basically,	building	simplification	can	be	achieved	through	reducing	the
number	of	points	by	setting	a	geometric	error	tolerance	and	requirements	that	ensure	a	topologically	correct	map.	The	result,	however,
may	show	loss	of	shape	regularities	typical	of	buildings.	To	avoid	this,	measures	can	be	added	that	favour	solutions	with	right	angles	while
keeping	the	dominating	edge	directions	of	the	input	polygons	(Figure	4).	An	open	problem	is	the	preservation	of	symmetries	in	a	building
polygon.

	

Concluding	Remarks

The	biggest	advantage	of	our	optimisation	approach	is	that	it	separates	definitions	of	map	requirements	and	quality	from	algorithmic
solutions.	Presumably	the	development	of	new	automatic	map-generalisation	algorithms	will	continue	as	long	as	user	needs	change.	This
makes	the	optimisation-based	approach	promising,	in	that	it	allows	the	generalisation	problem	to	be	incrementally	modelled.

		

	

	

Further	Reading
-	Haunert,	J.-H.,	Sester,	M.,	2008.	Area	Collapse	and	Road	Centre	Lines	Based	on	Straight	Skeletons.	GeoInformatica,	12(2):	pp169-191.
-	Haunert,	J.-H.,	Wolff,	A.,	2010.	Optimal	and	Topologically	Safe	Simplification	of	Building	Footprints.	In:	Proc.	18th	ACM	SIGSPATIAL
International	Conference	on	Advances	in	Geographic	Information	Systems	(ACM-GIS'10),	pp	192-201.
-	Haunert,	J.-H.,	Wolff,	A.,	2010.	Area	Aggregation	in	Map	Generalisation	by	Mixed-integer	Programming.	International	Journal	of
Geographical	Information	Science,	24(12):
1871-1897.
	

	

	

https://www.gim-international.com/content/article/map-generalisation


