
ARTICLE

PUSHING	THE	LIMITS	ON	LIDAR	CHANGE
DETECTION	AT	REGIONAL	SCALES

Predicting	the	future	by	mapping
the	past

Lidar	change	detection	(LCD)	is	one	of	the
most	capable	techniques	for	mapping
changing	terrain	through	time.	It	can	be
applied	in	billion-dollar	decisions	to
design,	build	and	operate	tunnels,
bridges,	highways,	railways,	pipelines	or
subdivisions,	which	require	engineers	to
evaluate	how	the	earth	will	behave	for
decades	to	come.	Predicting
morphological	change	involves	a	deep
understanding	and	appreciation	of
geology,	geological	processes,	climate
change	and	knowledge	as	to	what
physical	changes	have	happened	in	the
past	or	may	occur	in	the	future.	This
article	presents	how	utilizing	a	graphics
processing	unit	(GPU)	and	digital	delivery
of	results	can	improve	the	LCD	process
by	a	factor	of	a	thousand,	opening	up
previously	unthinkable	applications.

LCD	is	the	numerical	process	of	comparing	multiple	Lidar	datasets	with	overlapping
coverage	from	different	points	in	time.	Airborne	Lidar	scanning	(ALS)	LCD	is	used	by
engineers	and	geoprofessionals	to	identify	and	track	changing	ground	conditions
commonly	associated	with	geohazards	such	as	landslides,	flooding,	bank	erosion,	debris
slides,	subsidence	and	rockfalls/avalanches,	as	well	as	assets	such	as	embankments,
highway	pavement,	bridges,	open	pits	and	dams.	Conducting	LCD	analysis	is	typically
completed	using	one	of	three	general	approaches:

Digital	elevation	model	(DEM)	differencing.	DEM	differencing	calculates	the	vertical
change	between	two	DEMs	at	each	raster	cell,	typically	at	a	resolution	of	1m.	This	LCD
method	is	the	most	efficient	and	simplest	to	run,	facilitating	its	use	on	geographically

expansive	datasets.	However,	the	results	of	this	approach	are	generally	an	order	of	magnitude	less	accurate	than	a	fully	optimized
3D	solution	(see	point	3	below).
3D	point-based	normal	or	shortest	distance-based	differencing	(M3C2).	3D	point-based	LCD	calculates	the	difference	between
two	bare	earth	point	cloud	datasets	along	vectors	representing	the	local	normal	of	each	individual	point	in	the	dataset,	or	the	shortest
distance	between	multiple	datasets.	This	method	is	computationally	expensive	and	requires	ALS	datasets	to	be	subdivided	into
smaller	zones	(typically	less	than	30	million	points	per	dataset)	for	processing.	This	method	produces	enhanced	results	over	DEM
differencing	(see	point	1	above)	as	the	results	represent	a	true	3D	change	based	on	the	full	resolution	of	the	point-cloud	data.
ICP	pre-aligned	3D	point-based	normal	or	shortest	distance-based.	Iterative	Closest	Point	(ICP)	pre-alignment	with	3D	change
measurement	is	a	modification	of	point	2	above	that	utilizes	advanced	3D	error	reduction	algorithms	to	reduce	the	spatial	noise
between	the	ALS	datasets	prior	to	conducting	the	LCD.	This	spatial	noise	often	presents	itself	as	a	systematic	difference	between
the	two	datasets	due	to	ground	control	and	georeferencing	at	the	time	of	data	collection.	The	ICP	process	adds	considerable
computational	expense	and	the	use	of	advanced	algorithms	to	the	processing	chain	to	spatially	adjust	the	data	while	not	introducing
further	errors.	This	is	the	most	accurate	approach	to	conducting	LCD.

Figure	1:	Change	detection	results	for	a	slope	without	any	ICP	alignment,	at	a	+/-15cm	limit	of	detection.

In	the	case	of	applied	earth	science	applications,	a	3D	point-based	approach	with	ICP	pre-alignment	captures	the	mechanics	of	the



changing	ground	in	the	most	accurate	way,	given	that	purely	vertical	changes	resulting	from	the	DEM	differencing	approach	rarely
represent	the	true	mechanism	of	ground	movement,	and	errors	from	the	georeferencing	misalignments	are	significantly	reduced.

The	example	in	Figure	1	and	Figure	2	highlights	a	case	in	which	computing	a	3D	point	cloud-based	change	detection	without	ICP	(Figure
1)	would	not	have	allowed	the	detection	of	an	active	landslide	that	is	immediately	evident	in	the	results	of	the	change	detection	using	ICP
3D	point-based	LCD	(Figure	2).

Figure	2:	Change	detection	results	for	the	same	slope	as	in	Figure	1,	but	with	ICP	processing,	at	a	+/-15cm	limit	of	detection.

US	Highway	101
To	demonstrate	the	various	LCD	methods	and	power	of	advanced	LCD	processing,	ALS	data	procured	by	the	California	Department	of
Transportation	(CalTrans)	in	Northern	California	along	US	Highway	101,	in	an	area	known	as	Last	Chance	Grade,	is	presented	below.	At
this	location,	the	highway	traverses	steep	slopes	and	ocean	bluffs	which	are	actively	eroding	and	engaged	in	landslide	processes.

LCD	results	comparing	ALS	data	collected	in	2016	and	2020	are	presented	in	Figure	3.	LCD	results	are	typically	presented	as	colour-
contoured	datasets	overlain	on	the	bare	earth	topography	model.	Model	differences	greater	than	the	limit	of	detection	(LoD)	are	typically
filtered	out	of	the	results.	The	LoD	is	calculated	based	on	a	95%	confidence	interval	and	is	dependent	on	the	quality	of	the	spatial
alignment	between	the	two	Lidar	datasets.	Blue	colours	represent	zones	of	negative	change	(material	loss	or	subsidence)	and	red	colours
represent	zones	of	positive	change	(material	accumulation,	bulging	or	aggradation).

Switching	from	the	DEM-based	approach	to	a	3D	point	cloud-based	approach	at	Last	Chance	Grade	resulted	in	a	reduction	of	the	limit	of
detection	by	3	to	4cm,	and	using	the	ICP	combined	with	3D	point	cloud-based	approach	resulted	in	a	further	reduction	of	the	limit	of
detection	by	4	to	8cm.	This	is	an	overall	reduction	in	the	LoD	of	40%.	The	impact	of	the	error	reduction	on	infrastructure	monitoring	is
significant,	and	the	ability	to	detect	these	small	changes	is	extremely	valuable.	This	allows	owners	and	engineers	to	act	sooner	and	be
more	proactive	in	managing	assets	to	reduce	overall	lifecycle	costs.

Figure	3:	Lidar	change	detection	for	Last	Chance	Grade	utilizing	a	ICP	pre-aligned	point	cloud	normal-based	change	detection.

The	vision	and	the	problem	with	LCD
Figures	1,	2,	and	3	illustrate	the	advantage	of	utilizing	an	ICP	pre-alignment,	point-based	change	detection	approach	for	LCD.	As	ALS
data	is	collected	more	frequently	and	at	higher	densities	than	ever	before,	the	use	case	for	advanced	LCD	is	increasing.	The	ability	to
provide	engineers,	geoprofessionals	and	asset	owners	with	a	method	to	assess	and	communicate	3D	spatial	change	across	vast	scales	is
a	powerful	tool	to	understand	the	past,	predict	future	behaviour	and	manage	associated	risks.	LCD	applications	span	several	industries
and	applications	such	as	monitoring	highway,	rail	and	pipeline	networks,	reservoir	slopes	and	shorelines,	and	changing	coastlines.	Until
recently,	however,	the	ability	to	apply	advanced	numerical	methods	(specifically	method	3	above)	for	LCD	at	scales	beyond	specific	project
sites	has	been	extremely	limited	to	due	computational	resources	required	for	data	execution,	subject	matter	expertise	to	conduct	the
analysis,	and	digital	platforms	for	visualization	and	interrogation	of	results.

To	scale	up	3D	ICP	LCD	from	single	sites	to	regional	networks,	three	R&D	projects	were	undertaken:

Custom-built	3D	ICP	LCD	algorithms	written	using	native	GPU	compute	shaders
Collaborative	multi-user	3D	environment	for	analysis	and	visualization	of	cloud-hosted	LCD	results,	ortho	images	and	terrain	data
Integration	with	geospatial	asset	management	software	for	storage,	access	and	interrogation	of	LCD	data	with	all	other	geospatial
information.

Moving	to	the	GPU	and	the	world	of	compute	shaders
Over	the	last	20	years,	GPUs	have	evolved	from	fixed-function	systems	for	3D	rendering	to	general-purpose	computation	units.	Modern
GPUs	can	execute	thousands	of	calculations	in	parallel,	provided	that	those	operations	are	independent.	This	contrasts	with	CPUs	which
can	only	execute	dozens	of	operations	in	parallel	but	handle	general-purpose	code	and	conditional	logic	well.	As	a	result,	GPUs	offer	huge
speed	gains	in	cases	where	calculations	can	be	performed	in	parallel.	For	example,	deep	learning	and	3D	rasterization	are	hugely
accelerated	on	a	GPU	because	they	mostly	involve	performing	independent	calculations	on	each	element	in	large	buffers	of	data.

With	point-cloud	change	detection,	it	is	more	difficult	to	realize	these	speed	gains	since	a	point-cloud	change	algorithm	consists	of	two
types	of	operation:

Calculations,	such	as:
1.	 solving	for	an	alignment	transformation
2.	 calculating	normals
3.	 computing	change	values.

Spatial	queries,	such	as	determining	which	points:
1.	 are	likely	correspondences	between	two	clouds
2.	 represent	the	local	surface	around	a	point
3.	 should	be	considered	during	change	detection	around	a	point.

Often,	GPU	implementations	of	systems	are	performed	by	porting	existing	code	using	frameworks	like	nVidia	CUDA.	Unfortunately,	with
point	cloud	processing,	this	approach	results	in	a	GPU	implementation	that	is	entirely	bound	by	query	performance	since	data	structures
commonly	used	for	spatial	queries	access	memory	randomly	and	have	lots	of	conditional	logic.	In	fact,	the	result	can	be	slower	on	a	GPU
than	the	same	code	on	a	CPU!



The	suggested	implementation	performs	all	GPU	calculations	using	compute	shaders	–	the	lowest	level	of	code	natively	exposed	by	a
GPU,	which	provides	direct	control	over	execution	and	parallelism	which	is	used	to	achieve	high	performance.	The	authors	use	a	chain	of
compute	shaders	for	normal	calculation,	ICP	and	the	change	detection	itself.

Figure	4:	Screenshot	from	video	fly-through	of	LCD	results	along	US	Highway	101.

The	authors	also	perform	all	spatial	queries	on	the	GPU,	using	compute	shaders	and	linear	data	structures	optimized	for	GPU	hardware.
Their	query	algorithms	favour	speed	and	returning	conservative	results	over	returning	a	minimal	set	of	points.	Additional	points	returned	by
the	queries	during	calculation	are	then	rejected.	This	is	still	faster	overall,	because	the	GPU	performs	calculations	on	redundant	points
faster	than	it	can	execute	a	more	precise	query.

These	compute	shaders	are	driven	by	a	parallelized	CPU	framework	which	marshals	data	to	and	from	the	GPU,	handles	disk	access	and
performs	decompression	for	Lidar	formats	such	as	LAZ.	The	result	is	a	system	that	is	able	to	process	multi-billion-point	datasets	in	orders
of	magnitude	faster	than	the	fastest	CPU	implementations.

Visualization	and	collaboration
ALS	data	are	3D	by	nature,	and	ICP	3D	point-based	LCD	results	are	best	analysed	in	a	3D	environment.	BGC	developed	a	multi-user
collaborative	3D	environment	that	allows	users	to	‘fly’	around	the	Lidar	data	with	LCD	results	or	walk	across	the	terrain.	The	3D
environment,	built	on	Unity-based	technology,	facilitates	the	integration	of	high-resolution	ortho	imagery,	vector	data	and	dynamic	controls
over	the	LCD	results.	A	screenshot	from	a	video	of	three	separate	users	interacting	in	the	collaborative	space	is	presented	in	Figure	4.

Conclusion
The	ability	to	conduct	ICP	3D	point-based	LCD	at	a	regional	scale	utilizing	GPU	processing,	delivering	results	in	an	interactive,	collaborate
3D	environment,	at	speeds	upwards	of	three	orders	of	magnitude	faster	than	CPU-based	processing,	is	revolutionizing	the	usability	of	ALS
data.	In	the	past	year,	BGC	has	processed	over	40,000	linear	kilometres	of	LCD	data,	serving	up	tens	of	billions	of	LCD	points	in	digital
platforms	to	clients,	globally.	Being	able	to	extract	additional	value	from	ALS	data	to	better	understand	the	morphological	changes	and
behaviour	of	assets	over	time	greatly	enhances	an	engineer’s	ability	to	make	informed	decisions	and	design	resilient	infrastructure.
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