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THE	FUTURE	OF	CITY	MODELLING	FROM
GEOSPATIAL	DATA

Reconstructing	3D	buildings
using	deep	learning

How	can	artificial	intelligence	and	deep
learning	lead	to	a	robust	process	for	3D
city	modelling?	And	what	are	some	of	the
challenges?

Automated	classification	and	object
detection	in	Lidar	and	imagery	data	is
essential	for	minimizing	production	costs.
While	the	optimization	of	traditional
methods	using	rule-based	algorithms	has
enhanced	geospatial	applications,
significant	manual	intervention	is	still
required	to	obtain	a	high-quality	dataset.
This	article	outlines	how	artificial
intelligence	(AI)	can	lead	to	a	robust
process	for	3D	city	modelling	and
discusses	some	of	its	challenges.

Artificial	intelligence	for
remotely	sensed	data
With	recent	advances	in	the	field	of
remote	sensing,	the	use	of	AI	has
increased	significantly	among	the
geospatial	community.	Extracting
meaningful	information	from	an	enormous
amount	of	data,	now	being	collected	every
day,	is	crucial	and	requires	a	workflow
that	is	both	efficient	and	accurate.

There	are	several	articles	and	case
studies	in	which	deep	learning	(DL)
methods	are	used	for	aerial	Lidar
classification	and	object	detection;
however,	utilizing	a	DL	method	for
industry-level	and	large-scale	applications
is	a	demanding	task	and	incorporating	it
into	the	production	workflow	is	a
challenge.

Extracting	information	through	the
integration	of	Lidar	and	ortho	is	usually

done	using	automatic	methods	that	involve	either	colourizing	Lidar	points	using	images	or	concatenating	RGB-NIR	channels	with	extracted
feature	layers	from	Lidar,	such	as	the	digital	terrain	model	(DTM)	or	the	digital	surface	model	(DSM).	As	a	result	of	these	fusions,	either	the
3D	geometrical	information	of	point	clouds	degrades	when	transformed	into	a	2D	raster	file,	or	the	quality	of	point	cloud	colourization
deteriorates	due	to	reasons	such	as	shadows,	obstacles,	edges,	and	so	on.

Nevertheless,	integrating	Lidar	and	imageries	provides	an	opportunity	to	improve	the	AI	results	for	many	applications.



Figure	1:	Nanaimo	Lidar	dataset	used	for	training	the	deep	learning	model.

Automatic	3D	city	modelling	vs	deep	learning	models
In	automatic	methods	of	3D	modelling	that	use	a	programmatic	approach	to	extract	the	features	and	digitize	the	outlines	manually,	large-
scale	Lidar	datasets	must	go	through	a	multi-step	routine	to	be	classified.	

An	automatic	classification	routine	would	usually	include	classifying	ground	points,	separating	points	above	ground	into	classes,	and
grouping	and	classifying	buildings	based	on	their	planar	features	and	other	attributes,	such	as	echo.	However,	various	components	of	the
buildings	may	not	be	properly	classified,	such	as	edges,	hips,	chimney	flashing	and	walls,	depending	on	the	texture	complexity	and	Lidar
point	density.	Adjacent	objects	to	buildings	such	as	trees	might	also	be	misclassified.	This	is	why	manually	editing	Lidar	points	is	usually
required	to	achieve	high-quality	data.	As	a	result,	the	process	of	automatic	Lidar	data	classification	becomes	‘semi-automatic’	and	labour-
intensive.

Deep	learning	methods,	on	the	other	hand,	can	perform	classification	and	object	detection	tasks	much	faster	once	trained.	One	of	the
main	requirements	of	DL	methods	and	their	use	in	real-world	scenarios	is	the	necessity	of	high-quality	training	data	and	the	ability	to	easily
differentiate	the	existing	classes	in	the	data	from	each	other.	For	example,	traditional	methods	tend	to	eliminate	the	noisiness	of	the	data
by	limiting	ground	points	in	small	triangles.	This	would	leave	points	with	similar	characteristics	in	two	different	classes,	which	would	cause
the	DL	model	to	not	converge.

Figure	2:	(a)	Vancouver	Lidar	dataset,	(b)	the	predictions	of	the	deep	learning	model	before	fine-tuning	and	(c)	after	fine-tuning.

Training	model	and	data	preparation

To	train	and	test	a	DL	method,	we	used	186km2	of	aerial	Lidar	from	Nanaimo,	BC,	Canada,	with	approximately	30,000	roof	segments	that
were	automatically	classified	using	TerraSolid	and	manually	digitized	by	human	editors.

The	dataset	has	an	average	point	density	of	approximately	19pts/m2	and	was	originally	classified	into	the	classes:	Never	Classified	(0),
Unclassified	(1),	Ground	(2),	Low	Vegetation	(3),	Medium	Vegetation	(4),	High	Vegetation	(5),	Building	(6),	Noise	(7),	Water	(9)	and	Bridge
Deck	(17).	Since	the	objective	of	this	work	was	mainly	3D	city	modelling	and	because	the	buildings	were	the	objects	of	interest,	we
reclassified	the	data	into	Never	Classified	(0)	and	Building	(6),	so	that	the	DL	model	could	better	differentiate	buildings	from	other	points.
We	used	80%	of	the	Nanaimo	data	as	the	training	set	and	13%	for	validation.	The	remaining	7%	was	used	to	test	the	model.

We	used	the	PointCNN	model	for	this	purpose	and	the	Lidar	data	was	prepared	and	fed	to	the	network	in	block	sizes	of	50	x	50m	with
8,192	sample	points	per	block.	Intensity	and	return	numbers	were	considered	in	the	process	as	extra	features.	The	coordinates	of	Lidar
points	were	normalized	in	the	range	of	the	defined	block	size,	and	intensity	values	and	return	numbers	were	normalized	between	0	and	1.

Table	1	shows	the	precision,	recall	and	F1	scores	obtained	for	the	Never	Classified	and	Building	classes	for	our	training	dataset.	It
indicates	that,	despite	having	imbalanced	data	(with	buildings	being	just	under	5%	of	the	total	dataset),	the	model	was	able	to	properly
differentiate	buildings	from	other	points.

Table	1:	Precision,	recall	and	F1	score	values	obtained	for	Nanaimo	test	dataset.

Challenges	in	automation
One	of	the	major	limitations	of	deep	learning	models	is	that	performance	is	considerably	affected	when	they	are	tested	on	a	new	dataset	or
on	a	dataset	with	different	characteristics,	which	frequently	occurs	because	of	different	project	specifications	(e.g.	density	level)	and
varying	geographic	sites	(e.g.	urban,	forested,	mountainous).	Therefore,	to	automate	the	classification	procedure	while	obtaining
acceptable	results	in	various	scenarios,	it	is	necessary	to	make	sure	that	the	DL	model	is	generalized	and	can	predict	datasets	with
different	characteristics.	The	new	dataset	must	however	have	similar	feature	attributes	to	the	dataset	with	which	the	model	was	trained.

After	training	the	model	with	the	above	Nanaimo	dataset	and	achieving	highly	accurate	results,	we	tested	the	model	on	a	Vancouver
dataset.	The	Vancouver	dataset	had	an	average	point	density	of	nearly	45pts/m2,	which	is	noticeably	higher	than	the	Nanaimo	dataset.	As
expected,	the	primary	prediction	results	did	not	have	the	same	accuracy	as	the	Nanaimo	dataset	and	the	model	failed	to	correctly	classify
a	significant	portion	of	the	building	points	(as	represented	by	a	recall	value	of	67.43%	for	buildings	in	Table	2).

Table	2:	Precision,	recall	and	F1	score	values	for	the	Vancouver	dataset	before	and	after	fine-tuning	the	model.

To	improve	the	performance	of	the	model	on	the	Vancouver	dataset,	a	small	amount	of	the	Vancouver	dataset	(ten	1km	x	1km	tiles	in
total)	was	used	to	fine-tune	the	pre-trained	model.	As	can	be	seen	in	Table	2,	the	performance	of	the	model	significantly	increased	and
building	points	were	classified	with	an	F1	score	value	of	96.50%.

After	fine-tuning	the	model	with	the	Vancouver	dataset,	it	was	tested	on	a	new	dataset	from	the	City	of	Calgary.	The	Lidar	data	for	Calgary
had	an	average	point	density	of	approximately	38pts/m2.	As	can	be	seen	in	Figure	3,	the	buildings	in	the	Calgary	dataset	were	classified
with	a	high	accuracy	and	the	model	was	able	to	distinguish	buildings	from	adjacent	objects	such	as	bushes,	trees	and	cars.

Figure	3:	Calgary	dataset,	classified	with	the	deep	learning	model	trained	on	Nanaimo,	and	fine-tuned	by	the	Vancouver
datasets.



Refining	building	classification	with	images
One	of	the	major	requirements	of	Level	of	Detail	(LoD)	2.2	building	model	generation	is	building	footprint	layers.	Primarily,	the	building
footprints	were	extracted	from	Lidar	data	in	a	multi-step	process	including	rasterization,	polygonization	and	regularization.	To	refine	the
building	footprints	layer,	as	well	as	benefit	from	another	data	source	to	perform	a	quality	check	on	both	the	extracted	building	footprints
and	the	Lidar	classification,	we	used	a	pre-trained	Mask-RCNN	model	to	detect	buildings	from	aerial	images.

Building	footprints	extracted	from	the	imagery	were	overlaid	on	Lidar	data,	and	both	the	misclassified	Lidar	points	and	the	building
footprints	were	modified	accordingly.

Figure	4:	A	fragment	of	the	ortho	from	the	Nanaimo	dataset.

Conclusion	and	recommendation
Employing	AI-based	methods	in	industry-level	projects	requires	a	well-constructed	workflow	with	robust	datasets.	In	this	article,	we	first
trained	a	deep	learning	model	to	classify	building	points	in	aerial	Lidar	data	using	a	very	high-quality	dataset	from	Nanaimo.	Although	the
trained	model	obtained	acceptable	results	on	a	dataset	from	the	same	area	that	the	model	was	trained	with,	it	failed	to	achieve	a	high
accuracy	prediction	due	to	different	characteristics	of	the	new	dataset.	This	poor	performance	of	the	deep	learning	model	on	the
Vancouver	dataset	meant	that	the	model	was	not	sufficiently	generalized.	It	is	therefore	recommended	to	improve	the	generalization	and
transferability	of	the	trained	model	to	enhance	the	Lidar	prediction	quality	on	various	structure	types	by	providing	more	training	data.
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Figure	5:	Extracted	building	vectors	from	Lidar	data	overlaid	on	the	same	ortho.
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