
ARTICLE

	
Figure	1,	Threat-dome	query	shape
interacting	with	3D	geo-datasets.

THREAT	DOME	VISIBILITY	FOR
SMARTPHONES

Three	Dimensional	Query
GPS	receivers,	digital	compasses
(magnetometers)	and	tilt	sensors
(accelerometers)	are	increasingly
implemented	in	state-of-the-art
smartphones	such	as	the	iPhone	and
various	Android	Phones.	The	resulting
data	on	location,	azimuth,	and	declination
angles,	together	with	images	from	inbuilt
cameras,	enable	creation	of	a
photorealistic	and	geometrically	accurate
city	model.	In	turn,	the	newly	created	3D
scene	can	be	queried	wirelessly	while
moving	through	an	urban	environment.
The	authors	developed	a	prototype	-
Three	Dimensional	Query	(3DQ)	-	which
tailors	3D	visibility	analysis	to	mobile
devices	based	on	a	military-style	threat
dome	computation.	

The	‘threat	dome'	approach	is	operational
in	dedicated	military	applications.	Armed
forces	driving,	for	example,	an	armoured
personnel	carrier	through	an	urban
battlefield,	want	to	know	the	sightlines
to/from	targets	in	real	time.	A	virtual	view-
sphere	(3D	threat	dome)	is	generated	of	a
certain	radius,	aimed	at	identifying
buildings	or	other	objects	around	the
viewpoint	(Figure	1).	Geo-information	on
objects	that	touch,	overlap	or	otherwise
interact	with	the	dome	can	be	retrieved	via
wireless	communication	from	2D	and	3D

datasets	stored	and	indexed	in	an	advanced
Database	Management	System	(DBMS).

Information	Overload
Basing	it	on	the	threat	dome	approach,	we	developed	Three	Dimensional	Query	(3DQ)	as
a	mobile	spatial	interaction	(MSI)	prototype	linking	users	to	the	physical	environment	by
retrieving	and	displaying	spatial	and	non-spatial	information	using	smartphones	pre-loaded
with	web-based	map	services	such	as	Google	Maps	and	Yahoo	Maps.	Such	devices	may
help	real-estate	appraisers,	facility	managers,	tourists	and	others	while	walking	through	a
city	to	obtain	answers	to	questions	such	as:	what	are	these	buildings	around	me,	or	are
there	any	points-of-interest	(POIs)	in	my	field-of-view?	The	volume	of	information	on

restaurants,	hotels,	ATMs,	and	other	POIs	available	for	querying	and	display	is	often	overwhelming,	both	for	devices	and	their	users.
Display	clutter	may	confuse	and	disorientate	the	user,	resulting	in	annoyance	and	apathy	towards	the	usefulness	of	any	Location	Based
Service	(LBS).

Egocentric	Querying
The	threat	dome	approach	facilitates	an	egocentric	visibility	query	process,	which	enables	the	introduction	of	Hidden	Query	Removal
(HQR)	functionality	in	conjunction	with	other	map	personalisation	or	semantic	filtering	mechanisms.	HQR	ensures	that	a	query	returns
information	on	only	those	objects	that	a	user	can	actually	see	from	their	current	position,	and	vice	versa,	thus	supporting	de-cluttering	and
reducing	information	overload.	For	example,	new	students	can	explore	their	university	campus	by	pointing	a	smartphone	at	a	building,	or
even	at	specific	floors	or	rooms,	to	retrieve	information	indicating	whether	these	are	labs,	offices	or	classrooms.	Depending	on	the
contents	of	the	database,	questions	could	be	answered	concerning	whose	office	window	is	being	pointed	at,	or	what	classes	are



Figure	2,	Overview	of	3DQ
architecture.

Figure	3,
Mapping
interface	on
Nokia	Navigator
6210;	green
arrow	indicates
query	direction.

	

Figure	5,	3D	frustum	query	in	real-
world	environment.

timetabled	to	take	place	there,	or,	perhaps	more	interestingly,	"Can	I	see	any	of	my	Facebook/Twitter	Friends	from	where	I'm	sitting?"	or
indeed	"Can	they	see	me?"

Flexible	Database	
A	specialised	DBMS	is	required	for	storing,	indexing	and	managing	such	large	amounts	of	dense
geodata.	Performing	simple	directional	queries	requires	a	database	that	supports	2D	spatial	objects.
In	addition,	efficient	topological	operators	for	determining	interactions	between	objects	should	be
available.	Most	commercial	databases,	such	as	IBM	DB2	Spatial	Extender,	Oracle	Spatial,	and	PostGIS,	have	these	capabilities.
However,	performing	3D	directional	queries	is	more	complex	and	requires	storage	and	indexing	of	3D	objects.	For	instance,	a	building	is
stored	as	a	polygon	in	a	2D	database	and	as	a	solid	in	a	3D	database.	Moreover,	to	support	3D	queries,	functionality	should	be	available
to	determine	which	building,	or	part	of	it,	a	direction	vector	interacts	with.	These	advanced	requirements	limit	database	options.	We	opted
for	Oracle	11g,	as	this	database	supports	many	coordinate	systems	and	identification	of	3D	topological	relationships.	It	also	sustains
storage,	indexing	and	modelling	of	large	sets	of	geo-objects,	such	as	buildings	in	cities,	for	further	query	processing.	3D	objects	are
modelled	as	composite	solid,	solid,	surface,	and	polygon;	corresponding	respectively	to	building,	house,	roof,	and	window.	The
architecture	of	3DQ	is	split	into	server-side	and	client-side,	where	data	exchange	is	based	on	either	a	SOAP	or	RESTful	style	web-service
(Figure	2).	A	WebLogic	server	provides	the	interfaces;	request	and	response	are	wrapped	in	an	XML	document,	thus	allowing	portability
across	mobile	device	platforms.

Present	Prototype

Our	prototype	consists	of	a	Nokia	Navigator	6210	smartphone	installed	with	3DQ	and	equipped	with	an	integrated	GPS
receiver,	magnetometer,	and	accelerometer	(Figure	3).	Data	is	accessed	using	Python	for	Symbian	Series	60	(PyS60)
Operating	System.	The	database	covers	Dublin	City.	A	SOAP	library	port	for	PyS60	(SOAPpy)	gives	access	to	the	web-
service	on	the	3DQ	server.	The	entire	query/retrieval	process	is	performed	on	the	server-side,	with	as	primary	input
location,	direction	and	tilt	provided	by	the	smartphone.	2D	queries	include	(see	Figure	4,	left	part	of	schematic
overview):	

-	standard	range	queries	to	find	all	neighbours	and	nearest	neighbours

-	single	ray	directional	queries	(Point-to-Select	2D)

-	directionally	constrained	(Field-of-View)	queries	with	HQR	functionality.

-	full	360º	queries	(Isovist).

The	3D	query	processor	facilitates	three	types	of	query.	Depending	on	the	level	of	detail	of	the	dataset,	point-to-select	3D	identifies	which
building,	floor	and	even	window	the	device	is	pointing	at,	functionality	which	is	not	delivered	by	Point-to-Select	2D.	In	3D,	the	elevation	of
the	user	is	taken	into	account	along	with	the	real-world	dimensions	of	the	buildings	and	other	database	objects.

Pointing	over	a	lower	building	to	a	higher	one	behind	it,	the	3DQ	processor	can	recognise	this
difference.	Detailed	information	about	individual	objects	in	a	3D	Field-of-View	(Figures	5	and	6)	can	be	generated	with	a	frustum	view
query,	which	can	be	thought	of	as	a	‘squared'	flashlight	beam	scanning	a	wall	to	retrieve	information	about	areas	‘illuminated'.	Finally,	a
360º	Isovist	view	in	three	dimensions	out	to	a	specified	radius	(threat	dome)	can	be	generated.	The	above	queries	are	all	implemented	by
generating	the	respective	query	shape	as	a	3D	object	(i.e.	3D	query	‘window')	in	a	spatial	database,	and	then	utilising	inherent	3D	query
operators	to	identify	topological	relationships.	For	example,	the	Oracle	SDO_anyinteract	query	operator	will	retrieve	all	database	objects
that	intersect	in	any	way	with	the	query	shape,	while	the	SDO_intersection	operator	will	retrieve	the	coordinates	of	the	intersection	point(s).
From	these	data	the	query	process	is	refined	to	include	only	those	objects	actually	visible	to	the	user,	thus	reducing	information	overload
on	a	mobile	device.

Concluding	Remarks

Further	tests	will	be	carried	out	on	a	highly	detailed	campus	model	constructed	from	Lidar	data.	We
are	investigating	making	available	the	3DQ	technology	to	a	larger	audience	through	various	online	app	stores	such	as	iPhone	App	Store,
Android	Market	and	Nokia	OVI	Store,	for	user	testing	and	possible	commercialisation	opportunities.

Acknowledgements

Research	presented	here	was	funded	by	a	Strategic	Research	Cluster	Grant	(07/SRC/I1168)	by	Science	Foundation	Ireland	(SFI)	under
the	National	Development	Plan.

Further	Reading

Gardiner	K.,	Yin	J.,	Carswell	J.D.,	2009,	EgoViz	-	A	Mobile	Based	Spatial	Interaction	System;	9th	International	Symposium	on	Web	&
Wireless	GIS	(W2GIS),	Maynooth,	Ireland:	Springer	LNCS	Vol.	5886,	pp135-152.	

https://www.gim-international.com/content/article/three-dimensional-query


