
ARTICLE

PROPERTY	TRANSACTIONS	IN	SLOVENIA

UML	in	Use	Case	Modelling
Modelling	is	a	well-proven	and	widely	accepted	engineering	technique	for	controlling	complex	reality.	Unified	Modeling	Language	(UML)	is
a	general-purpose	aid	for	graphical	modelling.	The	author	presents	a	use	case	driven	approach	for	real-estate	transaction	in	Slovenia.

Short	Introduction	to	UML	
By	Mathias	Lemmens,	editor,	GIM	International	

When	one	wants	to	convert	a	process	(dynamic	system)	taking	place	within	a	certain	domain	-	such	as	registration	of	a	transfer	act	in	a
land	administration	system	-	into	a	software	system,	one	may	approach	the	process	from	several	directions.	
UML	(Unified	Modeling	Language)	has	been	developed	to	describe	the	different	views	on	a	do-main	process	in	graphical	notations	in	the
form	of	diagrams.	No	less	then	nine	types	of	modelling	diagrams	are	distinguished:	use	case,	class	(package),	object,	sequence,
collaboration,	statechart,	activity,	component,	and	deployment.	Use	cases	aim	at	obtaining	system	requirements	from	a	userâ€™s	view.
The	use	case	diagram	is	a	collection	of	use	cases,	users	of	the	system	(actors)	and	their	messages.	Use	cases	are	represented	by	ovals,
actors	by	stick	figures	and	communications	by	lines	that	link	actors	to	use	cases.	The	class	diagram	describes	the	static	structure	of	a
system	by	displaying	classes	and	the	relationships	among	them.	It	is	the	backbone	of	UML	and	is	essentially	the	communication	language
for	designers.	Classes	are	represented	by	rectangles	divided	into	three	parts:	class	name,	attributes	and	operations.	Lines	represent
relations	between	classes.	Related	classes	can	be	grouped	into	packages	so	that	overview	is	kept.	A	Package	diagram	organises
elements	of	a	system	into	related	groups	to	minimise	dependencies	between	packages.	Packages	are	represented	as	folders	(rectangles
with	small	tabs	at	the	top).	The	package	name	is	on	the	tab	or	inside	the	rectangle.	Dotted	arrows	represent	dependencies.	

Objects	are	the	basic	elements	of	a	system;	they	interact	by	sending	each	other	messages.	Object	diagrams	describe	the	static	structure
of	a	system	at	a	certain	instant.	Class	and	object	diagrams	describe	the	static	part	of	the	process,	interaction	diagrams	are	dynamic:	they
describe	how	objects	work	together	over	time.	A	sequence	diagram	is	an	interaction	diagram,	which	specifies	which	messages	are	sent
when.	These	are	arranged	according	to	time:	time	progresses	downward	along	the	vertical	axis.	The	objects	involved	are	listed	in
rectangles	along	the	horizontal	axis	at	the	top,	from	left	to	right	according	to	their	place	in	the	message	sequence.	The	lifeline	is	the	time
that	an	object	exists	and	is	represented	by	a	vertical	dotted	line.	Arrows	represent	messages.	The	length	of	the	activation	bar	represents
the	duration	of	execution	of	the	messages.	In	Figure	6,	seller,	buyer,	sale	contract	and	notary	are	all	classes,	which	start	sending
messages	at	the	same	time,	but	the	first	message	sent	by	the	buyer	takes	longer	than	the	first	message	of	the	others.	The	object
rectangles	are	labelled	either	by	class	name,	object	name	or	both;	class	names	are	preceded	by	colons	(:)	Collaboration	diagrams	are	also
interaction	diagrams:	they	communicate	the	same	information	as	sequence	diagrams;	how-ever,	the	focus	is	now	on	roles	of	objects	rather
then	on	the	dispatch	times	of	messages.	Since	time	is	not	represented,	the	messages	are	numbered	to	denote	sending	order.	

Objects	may	be	in	different	states	at	differing	times,	the	state	depending	on	current	activity	or	condition.	A	statechart	diagram	shows	the
possible	states	and	the	transactions	that	cause	a	change	in	state.	States	are	represented	by	rounded	rectangles	while	transactions	are
arrows	connecting	state.	Events	or	conditions	that	trigger	transitions	are	written	beside	the	arrows.	While	a	statechart	diagram	describes
an	object	undergoing	a	process,	an	activity	diagram	focuses	on	the	flow	of	activities	involved	in	a	single	process.	The	activity	diagram,
basically	a	general-purpose	flowchart,	shows	how	these	activities	depend	upon	one	another.	
Component	diagrams	are	the	software	analogues	of	class	diagram;	they	show	the	types	of	software	components,	their	interfaces	and
dependencies.	Deployment	diagrams	represent	the	physical	configurations	of	software	and	hardware,	including	nodes,	links	and
dependencies.	

Property	Transfer	
The	transfer	of	a	parcel	from	seller	to	buyer	has	to	follow	a	sequence	of	procedures,	which	can	be	described	as	a	system	with	static
structure	and	dynamic	interactive	behaviour.	UML	captures	such	systems	by	modelling	them	as	a	collection	of	classified	objects
collaborating	to	perform	services	that	ultimately	benefit	the	user	of	the	system.	The	static	structure	defines	important	classes,	their
properties	and	relationships.	The	dynamic	behaviour	defines	the	states	and	modifications	of	objects	over	time	and	the	interaction	amongst
them	required	for	accomplishment	of	a	service.	A	use	case	defines	such	a	service	for	an	actor	or	specific	user.	The	popular	starting	point
is	use	case	modelling	that	drives	the	whole	development	process.	The	main	issue	is	to	develop	a	suitable	method	tailored	to	conceptual
modelling	of	real-estate	transaction	problems.	The	case	considered	here	is	the	simplified	sale	of	a	whole	parcel,	within	a	Slovenian
situation.	Our	approach	is	use	case	driven	and	we	focus	on	procedural	aspects.	Figure	1	shows	the	general	context	as	a	UML	class
diagram;	class-oriented	development	is	described	in	the	literature	as	Core	Cadastral	Domain	Model	(CCDM).	

Problem	Domain	



Problem	domain	modelling	concerns	selection	of	objects,	generalisation	and	aggregation	of	objects	into	classes	and	definition	of
properties	(attributes)	and	relations	of	objects	and	classes.	Prior	to	this	stage,	available	data	and	expertise	has	to	be	gathered	on	property
transaction	modelling,	similar	approaches,	existing	transaction	processing	systems	and	detailed	user	requirements	(proficiency
acquisition).	The	resulting	abstract	model	is	based	on	selected	semantics,	formalism	and	terminology.	Classes,	their	properties	and
relations	are	defined	in	UML	class	diagrams.	The	best	sources	of	domain	classes	are	likely	to	be	high-level	problem	statements,	user
requirements	and	expertsâ€™	knowledge	of	the	problem	domain.	These	domain	models	also	serve	as	a	glossary	of	terms	(ontology	of	the
domain)	used	during	the	whole	modelling	process.	The	next	step	is	to	review	the	lists	of	candidate	classes	and	eliminate	items	that	fall
outside	the	scope	of	the	problem	domain.	During	the	refining	stage,	relations	among	classes	should	be	added.	Such	relations	include
associations,	generalisations	and	various	dependencies.	

The	Use	Case	
A	use-case	is	a	sequence	of	activities	performed	by	an	actor	to	achieve	a	goal	or	a	service.	An	actor	is	a	user	or	an	entity	such	as
database	or	other	system	outside	the	problem	domain.	The	relationship	between	actors	and	use	cases	is	m	to	n.	This	approach	aims	at
capturing	important	user	requirements	and	possible	scenarios.	Use	case	model	creation	is	an	iterative	and	incremental	process	of	writing,
drawing	and	refining	text	and	UML	diagrams.	The	resulting	model	is	an	exter-nal	view	which	determines	all	further	stages,	including
definition	of	the	static	data	model	(class	diagrams).	This	is	because	use	case	modelling	represents	the	conceptual	centre	of	the
methodology.	A	complete	and	unambiguous	use	case	describes	one	aspect	of	use	without	presuming	specific	design	or	implementation.	
The	sidebar	shows	a	simplified	use	case	description	of	the	main	scenario	for	the	transaction	of	a	whole	parcel.	Easements	are	left	out
because	they	are	usually	resolved	by	special	contract.	The	level	of	detail	in	a	use	case	diagram	can	be	adapted	to	the	required	level.	Here
we	limit	diagrams	to	an	overview	level.	

Shared	Responsibilities	
For	important	use	cases,	the	processing	sequence	should	be	outlined	on	activity	diagrams.	Activity	diagrams	enable	better	understanding
of	comprehensive	use	cases.	We	derived	general	and	detailed	activity	diagrams	to	show	the	sequence	and	distribution	of	responsibility	for
our	case,	in	which	the	order	of	activities	is	generally	sequential	and	defined	by	laws	and	other	regulations.	Figure	5	shows	a	generalised
activity	diagram	for	our	case;	excluded	is	the	checking	procedure	for	accordance	with	public	regulation	pre-emption,	mortgagees	and
easements.	

Interacting	Objects	
Collaboration	specifies	how	a	set	of	connected	objects	interacts.	Interactions	consist	of	sequences	of	messages	sent	between	objects,
modelled	by	UML	sequence	diagrams.	The	dimension	of	the	vertical	axis	is	time,	which	proceeds	from	top	to	bottom;	the	horizontal	axis
shows	objects	or	classes	and	their	roles	in	the	collaboration.	One	sequence	diagram	depicts	the	basic	and	alternate	courses	within	the
particular	use	case,	anticipating	how	such	a	process	will	be	accomplished	over	time.	The	vertical	lifeline	of	an	object	and	its	role	is	shown
as	a	dashed	line.	When	an	object	is	active,	its	lifeline	may	be	drawn	as	a	double	line	on	top.	Messages	are	shown	as	arrows	from	the
lifeline	of	one	object	to	that	of	another,	and	are	arranged	in	time	sequence	down	the	diagram.	An	arrow	can	represent	a	sequential	(normal
synchronous)	message,	an	asynchronous	(one	way)	mes-sage,	a	temporal	event	or	a	returning	message.	The	length	of	the	activation
rectangle	can	be	used	to	reflect	the	focus	of	control	of	each	object.	The	flow	and	progression	of	messages	within	the	sequence	diagram	in
fact	represents	the	flow	of	control	among	the	participating	objects.	Figure	6	shows	a	partial	example	for	Slovenia.	The	pre-emption	and
encumbrance	(mortgages	and	easements)	are	not	included.	

Review	and	Testing	
The	outcome	of	the	procedural	analysis	should	match	well	with	use	case	requirements.	Verifying	and	assuring	that	the	â€˜howâ€™	on	a
sequence	diagram	matches	the	â€˜whatâ€™	of	the	use	case	is	the	aim	of	critical	design	review:	each	sentence	of	use	case	description
and	messages	across	the	sequence	
diagram	should	fit.	It	must	always	be	obvious	which	object	is	in	control	and	for	how	long.	Testing	of	real-estate	transaction	cases	is	finally
performed	by	simulating	detailed	use	cases	step	by	step,	and	by	comparing	diagrams.	

Concluding	Remarks	
Elaboration	of	certain	detailed	UML	diagrams	can	be	a	demanding	task.	The	availability	of	powerful	and	adaptable	modelling	tools	is
important.	It	is	crucial	that	the	sequence	of	steps	be	co-ordinated	and	harmonised.	

Acknowledgement	
This	article	results	from	research	and	development	within	the	framework	of	the	COST	G9	action	entitled	â€˜Modeling	real	property
transactionsâ€™	(www.i4.auc.dk/costg9).	

Further	Reading

Bennett,	S.,	Skelton,	J.,	Lunn,	K.,	2005,	Schaumâ€™s	Outline	Series:	UML	(2nd	Edition),	McGraw-Hill.	
Blaha.	M.,	Rumbaugh,	J.,	2004,	Object-Oriented	Modeling	and	Design	with	UML,	(2nd	Edition),	Prentince	Hall.	
Lemmen,	C.,	van	Oosterom,	P.,	Zevenbergen,	J.,	Quak,	W.,	van	der	Molen	P.,	2005,	Further	Progress	in	the	Development	of	the
Core	Cadastral	Domain	Model,	FIG	Working	Week	2005	and	GSDI-8,	Cairo,	Eg.	
Rosenberg,	D.,	Kendall,	S.,	2001,	Applying	Use	Case	Driven	Object	Modeling	with	UML:	An	Annotated	e-Commerce	Example.
Addison-Wesley	Object	Tech-nology	Series.	
Rumbaugh,	J.,	Booch,	G.,	Jacobson,	I.,	2005,	The	Unified	Modeling	Language	Reference	Manual,	(2nd	Edition),	Addison-Wesley
Object	Technology	Series.

https://www.gim-international.com/content/article/uml-in-use-case-modelling


