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HOW	DEEP	LEARNING	ENABLES	LARGE-
SCALE	ANALYSIS

Use	of	AI	to	detect	rooftop	solar
potential

Global	climate	change	and,	in	some
areas,	the	lack	of	a	cheap	and	reliable
energy	supply	are	contributing	to	the
expansion	of	photovoltaics,	both
regionally	and	worldwide.	In	addition	to
ground-mounted	and	agrisolar	systems,
rooftop	systems	are	considered	a
promising	factor	in	the	generation	of	solar
energy.	Besides	being	subject	to	less
complex	planning	processes	and	legal
frameworks,	they	are	also	affordable,
reliable	and	make	use	of	existing	rooftop
infrastructure.

Installation	of	a	photovoltaic	system	is
usually	preceded	by	an	estimate	of	the
solar	potential.	In	terms	of	rooftop
systems,	this	analysis	is	mainly	performed
individually	for	each	building.	This
requires	the	measurement	of	various
parameters	such	as	roof	pitch,	orientation

and	any	roof	superstructures,	either	manually	or	as	part	of	a	Lidar	project.	For	large	target
areas,	the	estimation	work	quickly	becomes	infeasible,	either	due	to	the	huge	manual
effort	involved	or	the	high	costs	associated	with	high-resolution	Lidar	measurements.	By
applying	AI	to	digital	orthoimagery,	the	German	geointelligence	company
Deeeper.technology	has	developed	a	method	to	overcome	these	bottlenecks	and
determine	the	net	solar	potential	for	vast	regions	and	even	entire	countries.

Multiple	models	for	a	single	dataset
By	using	proprietary	AI	methods	in	combination	with	open-source	machine	learning

libraries,	the	method	applies	multiple	neural	networks	in	sequence,	each	of	which	makes	its	own	contribution	to	the	process.	At	the
beginning,	a	building	detection	network	evaluates	orthoimagery	with	a	resolution	of	20cm	and	extracts	the	buildings	as	a	binary	raster
(Figure	1).	However,	in	order	to	determine	not	only	the	pure	building	area	but	also	the	actual	usable	area,	two	further	steps	must	be	taken:
1)	the	roof	surface	of	the	building	must	be	broken	down	into	its	individual	convex	surfaces	in	order	to	consider	each	roof	surface
individually,	and	2)	areas	that	cannot	be	used	due	to	obstructions	need	to	be	excluded	from	the	calculation.	In	order	to	accomplish	this,
two	further	neural	networks	are	applied,	one	handling	the	decomposition	into	linear	surfaces	and	the	other	extracting	roof	superstructures
as	well	as	other	non-usable	roof	areas	from	the	orthophotos.

Figure	1:	Multiple	buildings	extracted	from	orthoimagery	as	a	binary	raster.	This	intermediate	result	shows	vectorized	polygons
with	the	detected	buildings	crosshatched	in	blue.

After	the	building	detection	network,	the	linear	decomposition	network	and	the	superstructure	detection	network	have	been	applied,
knowledge	is	gathered	about	the	total	roof	area	and	the	non-usable	surface.	In	order	to	obtain	the	net	useful	area	of	the	roofs,	in	the	next
step	only	the	difference	between	these	quantities	needs	to	be	calculated.	Thus,	the	intermediate	result	after	applying	the	three	above-
mentioned	networks	is	a	layer	containing	the	net	useful	area	for	each	building	in	the	target	area.

Not	just	a	matter	of	‘where’



At	this	point	in	the	process,	knowledge	about	the	location	of	the	buildings	as	well	as	the	net	usable	area	has	been	generated.	However,	it
is	not	yet	clear	how	useful	these	roof	areas	will	be	in	reality.	To	calculate	the	actual	solar	potential,	it	is	necessary	to	include	additional
information	about	elevation.	This	is	estimated	by	another	deep	learning	model	in	a	process	called	monocular	depth	estimation.	By
processing	digital	orthophotos	together	with	a	digital	surface	model	as	the	input	data,	this	model	learns	to	estimate	the	height	and	3D
shape	of	each	building.	As	a	next	step,	the	elevation	estimating	network	is	applied	to	the	target	area.	This	generates	crucial	information
about	the	height	and	slope	of	individual	roof	surfaces	(Figure	2)	as	well	as	about	potential	shading	by	other	objects	such	as	neighbouring
buildings	or	trees.	If	this	data	is	then	combined	with	the	information	about	the	roof	orientation	towards	the	sun,	the	solar	potential	can	be
determined	fairly	accurately	based	on	the	angle	of	inclination	and	azimuth	of	the	roof	surfaces.

In	detail,	this	is	achieved	by	calculating	for	each	roof	surface	the	percentage	yield	deviation	from	the	optimum	orientation	(south)	and	ideal
tilt	angle	(0	degrees).	Then,	based	on	the	size	of	the	percentage	deviation,	the	degree	of	shading	and	the	nominal	power	of	a	standard
solar	module,	the	potential	net	useful	power	of	each	roof	surface	is	determined	(Figure	3).	Therefore,	the	final	result	shows	not	only	the
theoretically	usable	area,	but	also	the	effective	output	for	each	roof	surface.

Figure	2:	Output	of	the	elevation	estimating	network	showing	the	digital	elevation	model	obtained,	with	a	scale	from	very	high
(red)	to	very	low	(blue).

Benefits	and	limitations
The	great	advantage	of	this	method	is	that	it	can	be	applied	to	an	area	of	any	size.	Furthermore,	the	input	data	is	readily	available	at	large
scales,	which	might	not	be	the	case	for	high-resolution	Lidar	measurements.	This	allows	larger	areas	such	as	provinces	and	even	entire
countries	to	be	computed	in	very	little	time	(Figure	4).	Depending	on	the	computing	capacity	and	the	technology	used,	the	solution	can
analyse	several	square	kilometres	per	minute.	This	creates	a	considerable	spatial	as	well	as	temporal	advantage	compared	to	traditional
methods	such	as	manual	annotations	and	calculations,	and	a	cost	several	orders	of	magnitude	cheaper	than	a	Lidar	project.	On	the	other
hand,	of	course,	this	method	is	not	completely	error-	free.	Due	to	the	dependence	on	no	less	than	four	neural	networks,	it	cannot	be	ruled
out	that	objects	will	not	be	recognized	correctly.	This	applies	to	individual	buildings	as	well	as	single	roof	surfaces,	superstructures	and
shading.	However,	since	the	error	rate	is	comparable	to	that	of	a	human	GIS	annotator,	the	percentage	of	errors	can	be	regarded	as
negligible,	especially	considering	the	scale	and	the	advantages	mentioned	above.

This	method	offers	benefits	for	a	wide	variety	of	organizations,	ranging	from	companies	in	the	energy	industry	to	public	administrative
bodies.	At	a	time	when	there	is	often	little	to	no	inventory	data	available	on	solar	potential,	the	main	advantage	is	that	this	method
generates	key	metrics	that	provide	a	quick	situational	overview	of	the	buildings	in	a	particular	area	as	the	basis	for	decision-making.
Moreover,	the	intersection	with	commercial	register	data	also	allows	energy	suppliers	to	address	building	owners	more	specifically.	In
addition	to	that,	there	are	opportunities	for	more	targeted	grid-expansion	planning	to	further	drive	the	expansion	of	renewable	energies.

Figure	3:	The	same	buildings	analysed	for	their	solar	potential,	with	an	efficiency	scale	from	yellow	(high	potential)	to	brown
(low	potential).	This	shows	that	most	of	the	really	useful	areas	are	oriented	to	the	south.	As	expected,	areas	that	are	more
inclined	to	the	north	have	poorer	yields.

Conclusion
Large-scale	geospatial	analysis	is	often	associated	with	considerable	effort	and	high	costs.	AI	can	help	limit	both	the	effort	and	the	cost
involved.	Especially	in	applications	that	are	of	strong	urgency	due	to	their	political	or	societal	necessity,	intelligent	algorithms	can	be	a
decisive	accelerator.	In	the	case	of	the	expansion	of	solar	energy	systems,	deep	learning	algorithms	show	that	the	rooftop	solar	potential
in	entire	countries	can	be	analysed	in	just	a	few	days.	The	geointelligence	method	presented	above	is	not	impeccable.	However,	as	a
complement	to	existing	processes,	it	offers	a	way	in	which	the	geospatial	industry	can	make	greater	use	of	the	acceleration	opportunities
provided	by	AI,	machine	learning	and	automation	to	play	its	part	in	helping	to	meet	climate-related	and	energy-related	policy	goals.

Figure	4:	The	computed	solar	potential	for	each	building	in	the	German	district	of	Aachen,	a	district	with	an	area	of	around
550kmÂ².
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