Mapping Tropical Forest Carbon Storage
News

Mapping Tropical Forest Carbon Storage

A new and precise map of carbon storage in tropical forests has been collated by a NASA research team from NASA satellite data. The data provides a baseline for ongoing carbon monitoring and research and is expected to serve as a useful resource for managing the greenhouse gas carbon dioxide.

The new map, created from ground- and space-based data, shows for the first time the distribution of carbon stored in forests across more than 75 tropical countries. Most of that carbon is stored in the extensive forests of Latin America.

 

To arrive at a carbon map that spans three continents, the team used data from the Geoscience Laser Altimeter System Lidar on NASA's ICESat satellite. The researchers looked at information on the height of treetops from more than 3 million measurements. With the help of corresponding ground data, they calculated the amount of above-ground biomass and thus the amount of carbon it contained.

 

The team then extrapolated these data over the varying landscape to produce a seamless map, using NASA imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra spacecraft, the QuikScat scatterometer satellite and the Shuttle Radar Topography Mission.

 

The map reveals that in the early 2000s, forests in the 75 tropical countries studied contained 247 billion tons of carbon. For perspective, about 10 billion tons of carbon is released annually to the atmosphere from combined fossil fuel burning and land use changes.

 

The researchers found that forests in Latin America hold 49 percent of the carbon in the world's tropical forests. For example, Brazil's carbon stock alone, at 61 billion tons, almost equals all of the carbon stock in sub-Saharan Africa, at 62 billion tons.

 

Deforestation and forest degradation contribute 15 to 20 percent of global carbon emissions, and most of that contribution comes from tropical regions. Tropical forests store large amounts of carbon in the wood and roots of their trees. When the trees are cut and decompose or are burned, the carbon is released to the atmosphere.

 

Previous studies have estimated the carbon stored in forests on local and large scales within a single continent, but there existed no systematic way of looking at all tropical forests. To measure the size of the trees, scientists typically use a ground-based technique, which gives a good estimate of how much carbon they contain. But this technique is limited because the structure of the forest is extremely variable and the number of ground sites is very limited.

 

The carbon numbers, along with information about the uncertainty of the measurements, are important for countries planning to participate in the Reducing Emissions from Deforestation and Degradation (REDD+) program. REDD+ is an international effort to create a financial value for the carbon stored in forests. It offers incentives for countries to preserve their forestland in the interest of reducing carbon emissions and investing in low-carbon paths of development.

 

The map also provides a better indication of the health and longevity of forests and how they contribute to the global carbon cycle and overall functioning of the Earth system. The next step in Saatchi's research is to compare the carbon map with satellite observations of deforestation to identify source locations of carbon dioxide released to the atmosphere.

 

Image Courtesy: NASA

 

Geomatics Newsletter

Value staying current with geomatics?

Stay on the map with our expertly curated newsletters.

We provide educational insights, industry updates, and inspiring stories to help you learn, grow, and reach your full potential in your field. Don't miss out - subscribe today and ensure you're always informed, educated, and inspired.

Choose your newsletter(s)

News